• Title/Summary/Keyword: 노치 파괴 시험법

Search Result 19, Processing Time 0.016 seconds

A Study on Microscopic Fractrue Behavior of Mortar Using Acoustic Emission (음향방출을 이용한 mortar 재료의 미시적 파괴거동에 관한 연구)

  • 이준현;이진경;장일영;윤동진
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.203-211
    • /
    • 1998
  • It is well recognized recently that acoustic emission, which is an elastic wave generated from rapid release of elastic energy in steressed solids, is very useful tool for on-line monitoring of microscopic behavior of deformation of material. In this study, three point bend test was performed to evaluate the microscopic damage progress during the loading and failure mechanism of mortar beam by monitoring the characteristic of AE signal. The relationship between AE characteristic and microscopic failure mechanism is discussed. In addition 2 dimensional AE source location based on triangular method was also done to monitor the intiation and propagation of micro crack around notch tip of mortar beam. It was shown that AE source location was very effective to predict the growth behavior of micro crack in mortar beam specimen.

Fracture Characteristics of Concrete at Early Ages (초기재령 콘크리트의 파괴 특성)

  • Lee, Yun;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.58-66
    • /
    • 2002
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy, and bilinear softening curve based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By taking various strengths and ages, load-crack mouth opening displacement curves were obtained, and the results were analyzed by linear elastic fracture mechanics and the finite element method. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete ages from 1 day to 28 days. By numerical analysis four parameters of bilinear softening curve from 1 day to 28 days were obtained. The obtained fracture parameters and bilinear softening curves at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

Evaluation of PWHT cracking susceptibility of the Cr-Mo steel alloys (Cr-Mo 합금강의 후열처리 균열 감수성 평가)

  • Kim, Sang-Jin;Kim, Ki-Soo;Lee, Young-Ho
    • 대한공업교육학회지
    • /
    • v.31 no.1
    • /
    • pp.200-210
    • /
    • 2006
  • This C-ring test, normally employed for evaluating susceptibility to stress-corrosion cracking, was determined to be a suitable small scale test to evaluate PWHT(Post-Weld Heat Treatment) cracking susceptibility. This test is possible to incorporate an actual weld, to introduce a notch into the coarse grained HAZ(Heat Affected Zone), to load the coarse grained HAZ any level of stress ad, most importantly, since the C-ring is an approximately constant strain type test, the stress decreases with time at temperature in a manner similar to that of an actual steel weldment. The procedure employed in making the C-ring was presented in the experimental procedure section, however, several points deserve further discussion. The walls of the weld groove are made along radial lines form the center of th var in order to obtain an HAZ which is oriented perpendicular to the walls of the machined C-ring. Therefore, the plane of maximum stress will be aligned through the HAZ and, therefore, crack propagation will not be forced to deviate form the plane of maximum stress in order to remain in the coarse grained HAZ as is the case with the Y groove test.

A study on fracture toughness evaluation and crack growth behavior in FRP (SMC material) (FRP(SMC재)의 균열成長 擧動과 破壞인성 평가에 관한 연구)

  • 김정규;박진성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.472-478
    • /
    • 1989
  • Using the SMC(sheet moulding compound) composite material consisting of E-glass chopped strand mat and unsaturated polyester resin, three-point bending tests are carried out to evaluate the elasto-plastic fracture toughness by means of R curve. The crack extension is experimentally observed with the ink staining method. The point of stable crack growth is discussed in consideration of the load-load point displacement curve, the damage behavior of the notch vicinity, and the R-curves. The damage zone of the notch vicinity was composed of the initiation and growth of subcracks as well as those of the main crack. The point of stable crack growth can be defined as the inflection point in the R curves and its point also concurrs with the proportional limit on the load-load point displacement curve.

피로균열진전거동 평가를 위한 균열길이 측정법 - 직류전위차법

  • 한승호
    • Journal of the KSME
    • /
    • v.37 no.10
    • /
    • pp.41-46
    • /
    • 1997
  • 철강구조물 부재 내에 노치나 균열이 존재할 수 있고, 외부의 피로하중에 의하여 취약부에서 발생한 균열이 진전하여 전구조물의 최종파손을 야기시킬 수 있다. 부재를 보다 안전하게 사용하고 또한 신뢰성을 확보하기 위해서는 이미 손상된 부재에서 균열의 진전상태를 계측할 수 있는 방법이 확립되어져야 하고, 파괴역학적 파라미터를 이용한 사용재의 균열진전거동특성이 평가되어야 한다. 균열길이의 측정방법은 지금까지 많은 연구자들에 의하여 개발되어져 왔는데 크게 광학현미경을 이용하여 육안으로 직접 균열길이를 측정하는 방법과 컴플라이언스, 초음파, AE 또는 전기적 신호를 통하여 얻어진 결괄부터 균열길이로 환산하는 간접적인 방법으로 대별된다. 대부분의 균열길이의 측정방법은 많은 수작업이 요구되고, 특히 하한계응력확대계수영역의 미세한 균열진전량을 측정하기에는 어려움이 따르고 있다. 이에 대하여 전도체 시험편에 일정전류를 흐르게 하고 균열길이의 증가에 따라 변화하는 전위차로 이를 균열길이로 평가하는 전기적인 측정방법이 있다. 이 방법은 실험장치가 비교적 간단하고 미세한 균열길이의 측정이 용이하여 균열길이의 직접적인 측정이 곤란한 고온역 그리고 충격하중하에서의 균열길이 측정에 이용이 확대되고 있다. 이 글에서는 여러 균열길이 측정방법의 장.단점에 대하여 고찰하고, 그 중 많은 장점을 갖고 있는 직류전위차법의 실험방법을 소개한다.

  • PDF

Dynamic Behaviors of Metal Matrix Composites in Low Velocity Impact (저속 충격하에서의 금속복합재료의 동적 특성)

  • ;Gamal A. Aggag;K.Takahashi
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • This study has observed that the dynamic behavior of Metal Matrix Composites (MMCs) in low velocity impact varies with impact velocity. MMCs with 15 fiber volume percent were fabricated by using the squeeze casting method. The AC8A was used as the matrix, and the alumina and the carbon were used as reinforcements. The tensile and vibration tests conducted yielded the yielded the tensile stress and elastic modulus of MMCs The low pass filter and instrumented impact test machine was adopted to study dynamic behaviors of MMCs corresponding to impact velocity. Stable impact signals were obtained by using the low pass filter. Impact corresponding to impact velocity. Stable impact signals were obtained by using the low pass filter. Impact energy of unreinforced alloy and MM s increased as the impact velocity increased. The increase of crack propagation energy was especially prominent, but the dynamic toughness of each material did not change much. To show the relation between crack initiation energy and dynamic fracture toughness, a simple model was proposed by using the strain energy and stress distribution at notch. The model revealed that crack initiation energy is proportional to the square of dynamic fracture toughness and inversely proportional to elastic modulus.

  • PDF

fiber Orientation Effects on the Acoustic Emission Characteristics of Class fiber-Reinforced Composite Materials (유리섬유강화 복합재의 AR특성에 대한 섬유배향 효과)

  • Kim, Jung-Hyun;Woo, Sung-Choong;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.429-438
    • /
    • 2003
  • The effects of fiber orientation on acoustic emission(AE) characteristics have been studied for the unidirectional and satin-weave, continuous glass-fiber reinforced plastic(UD-GFRP and SW-GFRP) tensile specimens. Reflection and transmission optical microscopy was used for investigation of the damage zone of specimens. AE signals were classified as different types by using short time fourier transform(STFT) : AE signals with high intensity and high frequency band were due to fiber fracture, while weak AE signals with low frequency band were due to matrix and interfacial cracking. The feature in the rate of hit-events having high amplitudes showed a process of fiber breakages, which expressed the characteristic fracture processes of individual fiber-reinforced plastics with different fiber orientations and with different notching directions. As a consequence, the fracture behavior of the continuous GFRP could be monitored as nondestructive evaluation(NDE) through the AE technique.

Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device (좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과)

  • ;;C. Soutis
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

A Study on Growth Behavior of Small Fatigue Crack in 304 Stainless Steel at Elevated Temperatures (고온하 304 스테인레스강의 작은 표면구열의 성장거동에 관한 연구)

  • 서창민;김영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.87-95
    • /
    • 1990
  • Rotating bending fatigue tests of an authentic steel 304 were performed at various temperatures such as room temperature, $538^{\circ}$ and $593^{\circ}C$. The plastic replica method was also applied in order to estimate the fatigue life on the basis of serial observation of small fatigue crack initiation and growth on the pit specimen surface. The fatigue crack growth behavior of 304 stainless steel was investigated within the frame work of elastic-plastic fracture mechanics within a narrow scatterband in spite of different stress levels at elevated temperature as at room temperature. The growth law of small surface crack is determined uniquely by the term. $\DELTA\sigma^{n}a$ where $\DELTA\sigma$ is the stress amplitude, a is the crack length, and n is a constant. It is found that the small crack growth behavior is basically equivalent to the S-$N_{f}$ relationship, where S and $N_{f}$ are stress and number of cycles to failure, and the fatigue life prediction is in good agreement with the experimental results.