• Title/Summary/Keyword: 노치 파괴 시험법

Search Result 19, Processing Time 0.023 seconds

Fracture Mechanics Assessment for Different Notch Sizes Using Finite Element Analysis Based on Ductile Failure Simulation (유한요소 연성파손 모사기법을 이용한 노치 결함 반경 크기에 따른 파괴역학적 평가)

  • Bae, Keun Hyung;Jeon, Jun Young;Han, Jae Jun;Nam, Hyun Suk;Lee, Dae Young;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.693-701
    • /
    • 2016
  • In this study, notch defects are evaluated using fracture mechanics. To understand the effects of notch defects, FE analysis is conducted to predict the limit load and J-integral for middle-cracked and single-edge cracked plates with various sizes of notch under tension and bending. As the radius of the notch increases, the energy release rate also increases, although the limit load remains constant. The values of fracture toughness($J_{IC}$) of SM490A are determined for various notch radii through FE simulation instead of conducting an experiment. As the radius of the notch increases, the energy release rate also increases, together with a more significant increase in fracture toughness. To conclude, as the notch radius increases, the resistance to crack propagation also increases.

Development and Application of Mode II Fracture Toughness Test Method Using Rock Core Specimen (시추코어를 이용한 암석의 mode II 파괴인성 시험법 개발과 적용)

  • Jung, Yong-Bok;Park, Eui-Seob;Kim, Hyunwoo
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.396-408
    • /
    • 2016
  • Rock fracture mechanics has been widely applied to various fields of rock and civil engineering. But most researches covered mode I behavior, though mode II behavior is dominant in rock engineering. Until now, there is only one ISRM suggested method for mode II toughness of rock. A new SCC (Short Core in Compression) mode II toughness test method was developed considering 1) application of confining pressure, 2) easiness of notch creation, 3) utilization of existing equipment, 4) simple test procedure. The stress intensity factors were determined by 3D finite element method considering line and distributed loading conditions. The tests with granite specimens were carried out using MTS 815 rock test system with a loading rate of 0.002 mm/s. The mean value of mode II fracture toughness of granite showed $2.33MPa{\sqrt{m}}$. Mode I toughness of the same granite was $1.12MPa{\sqrt{m}}$, determined by Brazilian disk test and $K_{IIC}/K_{IC}=2.08$. The smooth fracture surface with rock powder formation also supported mode II behavior of SCC method. The SCC method can be used for the determination of mode II fracture toughness of rocks based on the current results.

Fracture Toughness of a Center Notched Concrete Disk (중앙에 노치가 있는 콘크리트 디스크의 파괴인성)

  • Park Hyun-Jae;Jang Hee-Suk;Lee Seung-Hoon;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.851-858
    • /
    • 2004
  • Purpose of this paper is to determine the appropriate size of a center notched disk specimen for mode I fracture toughness $K_{IC}$. For this purpose, mode I test results with various sizes of center notched disk were compared with the RILEM three-point-bend test ones. Compressive strength of concrete used in this paper was 44.9 MPa. Diameters of 200, 300, 400 mm, thickness of 75, 100, 125 mm, and notch length ratios an of 0.3, 0.4, 0.5, 0.6 were used for the mode I disk test. Also, diameter of 300mm thickness of 100mm, and notch length ratios a/R of 0.3, 0.4, 0.5, 0.6 were used for the mixed mode disk test. Mixed mode stress intensity factors were investigated by changing notch angles for the disk specimen. Stress intensity factors of a center notched disk were calculated with the various methods for comparison. From the test results, mode I fracture toughness calculated from the disk specimen with diameter of 300 mm, thickness of Inn and notch length ratio a/R of 0.5 was very similar to the RILEM three-point-bend test ones. And it is verified that stress intensity factors for mixed mode can be easily calculated with the disk specimen.

A Study on the Stress Induced Brittle Failure around Openings with Cross-sectional Shape by Scaled Model Test and DEM Simulation (모형시험과 개별요소법을 이용한 단면 형상에 따른 공동 주변 취성파괴에 관한 연구)

  • Bae, Seong-Ho;Jeon, Seok-Won;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.389-410
    • /
    • 2007
  • For moderately jointed to massive rock masses, the failure and deformation behaviors around an excavated opening are absolutely influenced by the initial rock stress and strength of in-situ rock mass. The localized and progressive brittle failure around an opening does not mean whole collapse of an excavated opening. But, for many cases, it may induce temporary stopping of excavation works and reexamination of the current supporting system, which can result in delay of the entire construction works and additional construction cost. In this paper, the characteristics of the brittle failure around an opening with stress level and tunnel shape was studied by the biaxial compressive test using scaled specimen and by the numerical simulation with $PFC^{2D}$. The biaxial test results were well coincided with the stress induced failure patterns around the excavated openings observed and monitored in the in-situ condition. For the circular part of the opening wall, the stress induced cracks initially occurred at the wall surface in the direction of the minimum principal stress and contributed to the localized notch shaped failure region having a certain range of angle. But for the corner and straight part of the opening wall, the cracks initiated at sharp corners were connected and coalesced each other and with existing micro cracks. Further they resulted in a big notch shaped failure region connecting two sharp corners.

Analyses of Fracture Tube Tearing using Gurson Model and Shear Failure Model (Gurson Model과 Shear Failure Model을 이용한 파쇄튜브의 찢어짐 해석)

  • Yang, Seung-Yong;Kwon, Tae-Su;Choi, Won-Mok
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.280-285
    • /
    • 2008
  • Two kinds of failure model, that is, the Gurson model and a shear failure model were used for the finite element analyses of simple and notch tensile specimens and axial compression of a fracture tube with initial saw-cuts. The parameter values for the shear failure model were determined by a combined experimental and numerical analysis of the notch tensile specimens. After fitting the numerical parameters such as the yielding stress and the fracture shear strains, the Gurson model and the shear failure model were applied to the analysis of the fracture tube. Although the Gurson model and the shear failure model showed similar fracture behavior for the case of the tensile specimens, the respective results were different in the axial force and the crack growth rate of the fracture tube. That is, the shear failure model required more axial force to make the cracks propagate along the tube than the Gurson model. These are believed to show the lack of damage evolution process of the shear failure model. To decide which model is better in the tube analysis, experimental verification will be necessary.

Measurement of rock fracture toughness under mode I, II & mixed-mode conditions by using disc-typed specimens (인장, 전단 및 혼합모드에서 디스크 시험편을 이용한 암석의 파괴인성 측정에 관한 연구)

  • 장수호;이정인
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.315-327
    • /
    • 1999
  • Rock fracture mechanics has been widely applied to blasting, hydraulic fracturing, rock slope and many other practical problems in rock engineering. But a measuring method for the fracture toughness of rock, one of the mort important parameters in fracture mechanics as an intrinsic property of rock, has not been yet well established. To obtain mode I rock fracture toughness, the more favorable disc-typed specimens such as CCNBD, SCB, chevron-notched SCB and BDT were used in this study. Rock fracture toughness under mixed-mode and mode II conditions was measured by using the STCA applied to the CCNBD specimen. Size effects such as specimen thickness, diameter and notch length on fracture toughness were investigated. From the mixed-mode results, fracture envelops were obtained by applying various regression curves. The mixed-mode results were also compared with three mixed-mode failure criteria. In each fracture toughness test, acoustic emission was measured to get the data for determining the load levels of different crack propagation patterns.

  • PDF

Dynamic Fracture Properties of Nylon Thermoplastic Material Depending on Notch Angle with Charpy Impact Machine and Finite Element Method (유한요소법과 샤피충격시험기에 의한 노치각도에 따른 나일론 열가소성 플라스틱 재료의 파괴특성)

  • Park, Myung-Kyun;Lee, Jung-Won;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The notched Charpy impact test is one of the most prevalent techniques used to characterize the effect of high impulse loads on polymeric materials. In this study, a method of analysis in nylon plastic materials is suggested to evaluate the critical strain energy release rate for variation of notch angles from the Charpy impact energy measurement. Instrumented Charpy impact tester was used to extract ancillary information concerning fracture parameters in addition to total fracture properties and maximum critical load. The dynamic stress intensity factor of nylon plastic material was calculated for the ASTM Charpy specimen from the obtained maximum critical load. Also, the finite element model was developed to figure out the stress distributions for Charpy specimen with different notch angles subject to 3 point bending load which is equivalent to the load applied in the experiment.

  • PDF

Fracture Toughness of Concrete Brazilian Disk according to Maximum Size of Coarse Aggregate (굵은골재의 최대치수에 따른 콘크리트 브라질리언 디스크의 파괴인성)

  • Lee, Seung-Hoon;Kim, Hee-Sung;Jang, Hee-Suk;Jin, Chi-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.185-196
    • /
    • 2006
  • Fracture toughness is a material property for crack initiation and propagation in fracture mechanics. For mode I fracture toughness measurement in concrete, RILEM committees 89-FMT proposed three-point bend tests based on the two-parameter fracture model. But, there is no proposed test method as a standard for mixed mode test for now. And RILEM three-point bend test procedure is complicate. Therefore, in this study, brazilian disks of various size were designed as the concrete with a similar specified concrete strength and maximum size of coarse aggregate($G_{max}$) were respectively 20mm and 40mm. And mode I fracture toughness of brazilian disks was compared with that of RILEM three-point bend test. As a result, it was suggested appropriate size(thickness, diameter) and notch length ratio of brazilan disk on the $G_{max}$. And it was verified that stress intensity factors for mixed mode can be easily calculated with the disk specimen. Stress intensity factors of a concrete brazilian disk were evaluated with finite element analysis and five terms approximation for comparison.

Damage Evaluation of Glass Fiber/PET Composite Using Acoustic Emission Method (음향방출법을 이용한 Glass Fiber/PET 복합재료의 손상평가)

  • 김상태;김덕윤
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • In this study, damage evaluation of glass fiber reinforced thermoplastic composites was investigated with acoustic emission method. Specimens of 1.7mm thickness laminate were made from PET and 7 layers o171ass fabrics. Notch and impact loading were added to the specimen and normal tensile test and tensile test with the dead load were carried out. AE signal was measured as the functions of notch ratio to the width0 and impact energy in order to find out the correlation between fracture mode and AE parameters. The result has shown that low amplitude of AE signal was due to the microcrack of matrix and its growth, whereas the amplitude in the mid range was the response to the delamination and interfacial separation. In the range of high amplitude above 90dB. the fracture of glass fabric was found. Tensile strength decreased with increasing notch ratio to the width and impact energy because of tile effect or delamination, the cracking of matrix and stress concentration. In proportion to the size of damaged area. AE signal showed its wider range of frequency and energy as well as increased number of hits.

  • PDF