• Title/Summary/Keyword: 노면

Search Result 665, Processing Time 0.028 seconds

Analysis of Characteristics and Removal Efficiency of Road-deposited Sediment on Highway by Road Sweeping According to Particle Size Distribution (고속도로 노면퇴적물의 특성 및 도로청소에 의한 입도별 제거효율 분석)

  • Kang, Heeman;Kim, Hwang Hee;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.4
    • /
    • pp.286-295
    • /
    • 2021
  • The removal efficiency of road-deposited sediment (SDR) by road sweeping was analyzed by performing particle size analysis before and after road sweeping at four highways during May to December 2019. The SDR accounted for the largest proportion in the range of 250 to 850 ㎛ and the degree of its proportion had an effect on the particle size distribution curve. The particle size distribution of the collected sediments showed a similar distribution at all sites. Below 75 ㎛, the removal efficiency of SDR showed a constant value around 40%, but above 75 ㎛, it increased as the particle size increased. The removal efficiency was 82-90% (average 86%) for gravel, 66-93% (average 79%) for coarse sand, 35-92% (average 64%) for fine sand, 29-69% (average 44%) for very fine sand, 19-58% (average 40%) for silt loading, 10-59% (average 40%) for TSP, 13-57% (average 40%) for PM10, and 15-61% (average 38%) for PM2.5. SDR removal efficiency showed an average of 69% for the four highways. It was found that if the amount of SDR was less than 100 g/m2, it was affected by the road surface condition and had a large regional deviation. As such, the amount of SDR and the removal efficiency increased. The fine particles, which have relatively low removal efficiency, contained a large amount of pollutants, which is an important factor in water and air pollution. Therefore, various measures to improve the removal efficiency of fine particles in SDR by road sweeping are needed.

Bus Stop Design Guide by Identifying the Relationship between Bus Stopping Behaviors and Bus Stop Conditions (시내버스 정류소 정차 특성 분석을 통한 정류소 환경 정비 방안)

  • Kang, Inku;Shin, Kangwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.55-61
    • /
    • 2019
  • To improve bus service quality and passengers' safety at bus stops, it is necessary to analyze the relationship between bus stopping behaviors and bus stop conditions. Thus, this study investigated the proper stopping rate at 31 bus stops on Central Boulevard in Busan metropolitan city and analyzed the relationship between the proper stopping rate and bus stop operating conditions such as the length of berth, the distance from the front line of berth to bus shelter and so on. The analysis results show that the proper stopping rate is 45.82 % and the rates are closely related to each bus stop operating condition. Therefore, it is highly recommended that the front line of berth should be located parallel to bus shelter for improving the safety of bus passengers. In addition, it is suggested that the length of berth should be longer than 15m and the pavement marking of berth be redesigned with dash lines to take account of buses' entering and leaving the berth.

Analysis of Intersection Signal Violation Accident Using Simulation (시뮬레이션을 이용한 교차로 신호위반 사고 해석)

  • Han, Chang-Pyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.424-430
    • /
    • 2021
  • Determining the cause of a traffic signal violation is difficult if the drivers' claims are contradictory. In this study, the process of identifying signal violations using a simulation was presented based on cases. First, statements from the driver or witness whose cause of the signal violation is unclear were excluded. Second, the final position, final location, damaged area, steering status, braking status, and road surface traces of the vehicle were collected. The impact point was investigated from the stop line. Third, simulation data were modified and entered until the collision situation of the accident vehicle and the final stop position were met. Fourth, if the simulation results were consistent with the crash situation, the facts were verified by cross-validation to conform to the driver's statement. The results of the simulation showed that the Lexus entered the left turn signal in the intersection at approximately 55 km/h. In comparison, the Sonata driver saw the vehicle straight ahead at the intersection, entered the 72 km/h intersection, and collided with the Lexus. Therefore, the Sonata was identified as a signal violation, and the claims of the Sonata driver, witnesses, and police were contradictory.

The Estimation of Collision Speed at the Intersection using Simulation (시뮬레이션을 통한 교차로 충돌 속도 추정)

  • Han, Chang-Pyoung;Cheon, Jeong-Hwan;Choi, Hong Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.514-521
    • /
    • 2021
  • When calculating an intersection collision speed using a formula, it is very difficult to grasp the degree of deceleration of a vehicle after the collision unless there is road surface trace in the entire section where each vehicle moved from the point of collision to their final positions after the collision. A vehicle's motion trajectory shows an irregular curve after a collision due to the effects of inertia based on the driving characteristics of the vehicle, the eccentric force according to the collision site, and the collision speed. Therefore, it is very important to set the appropriate departure angle after a collision for accurate collision speed analysis. In this study, based on experimental collision data using a computer simulation (PC-Crash), the correlation between an appropriate vehicle departure angle and the post-collision speed was analyzed, and then, a regression analysis model was derived. Through this, we propose a method to calculate collision speed by applying only the vehicle departure angle in some types of collisions for traffic accidents at intersections.

Characteristics of Road Weather Elements and Surface Information Change under the Influence of Synoptic High-Pressure Patterns in Winter (겨울철 고기압 영향에서 도로 위 기상요소와 노면정보 변화 특성에 관한 연구)

  • Kim, Baek-Jo;Nam, Hyounggu;Kim, Seon-Jeong;Kim, Geon-Tae;Kim, Jiwan;Lee, Yong Hee
    • Journal of Environmental Science International
    • /
    • v.31 no.4
    • /
    • pp.329-339
    • /
    • 2022
  • Better understanding the mechanism of black ice occurrence on the road in winter is necessary to reduce the socio-economic damage it causes. In this study, intensive observations of road weather elements and surface information under the influence of synoptic high-pressure patterns (22nd December, 2020 and 29th January, and 25th February, 2021) were carried out using a mobile observation vehicle. We found that temperature and road surface temperature change is significantly influenced by observation time, altitude and structure of the road, surrounding terrain, and traffic volume, especially in tunnels and bridges. In addition, even if the spatial distribution of temperature and road surface temperature for the entire observation route is similar, there is a difference between air and road surface temperatures due to the influence of current weather conditions. The observed road temperature, air temperature and air pressure in Nongong Bridge were significantly different to other fixed road weather observation points.

Safety Evaluation of the Settlement Amount of the Bridge Earthwork Transition Area Using the Ground Penetrating Radar in the Soft Ground Section (연약지반 구간에서 지표투과레이더 활용한 교량 접속부 침하량 안전 평가)

  • Jung, Gukyoung;Jo, Youngkyun;Kim, Sungrae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.17-22
    • /
    • 2022
  • To reduce the bump of bridge/earthwork transition area caused by the settlement of the soft ground during public use, the road agencies have been continuously overlay or repavement at those areas. In this study, the vehicle-mounted ground penetrating radar with 1GHz air-coupled antenna was used to estimate the settlement amount of those areas for nine bridges built in the soft ground. Results shows that it is possible to effectively measure the thickness of pavement up to a depth of 1 m on an asphalt road with ground penetrating radar technology that can inspect under the road surface. Distinctively deformation of the road surface, the variation in the thickness of the pavement measured at bridge/earth transition areas is equivalent to a minimum of 50 mm and a maximum of 600 mm, and there is a risk of cavity in the ground. The difference in the increased pavement thickness is 50~250 mm for each bridge connection, which may cause the differential settlement. In this study, by using the result of the ground penetration radar, a plan for improving drivability and maintenance of the settlement is suggested and applied to the field.

Development of a Severity Level Decision Making Process of Road Problems and Its Application Analysis using Deep Learning (딥러닝을 이용한 도로 문제점의 심각도 판단기법 개발 및 적용사례 분석)

  • Jeon, Woo Hoon;Yang, Inchul;Lee, Joyoung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.535-545
    • /
    • 2022
  • The purpose of this study is to classify the various problems in surface road according to their severity and to propose a priority decision making process for road policy makers. For this purpose, the road problems reported by Cheok-cheok app were classified, and the EPDO was adopted and calculated as an index of their severity. To test applicability of the proposed process, some images of road problems reported by the app were classified and annotated, and the Deep Learning was used for machine learning of the curated images, and then the other images of road problems were used for verification. The detecting success rate of the road problems with high severity such as road kills, obstacles in a lane, road surface cracks was over 90%, which shows the applicability of the proposed process. It is expected that the proposed process will make the app possible to be used in the filed to make a priority decision making by classifying the level of severity of the reported road problems automatically.

A Black Ice Recognition in Infrared Road Images Using Improved Lightweight Model Based on MobileNetV2 (MobileNetV2 기반의 개선된 Lightweight 모델을 이용한 열화도로 영상에서의 블랙 아이스 인식)

  • Li, Yu-Jie;Kang, Sun-Kyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1835-1845
    • /
    • 2021
  • To accurately identify black ice and warn the drivers of information in advance so they can control speed and take preventive measures. In this paper, we propose a lightweight black ice detection network based on infrared road images. A black ice recognition network model based on CNN transfer learning has been developed. Additionally, to further improve the accuracy of black ice recognition, an enhanced lightweight network based on MobileNetV2 has been developed. To reduce the amount of calculation, linear bottlenecks and inverse residuals was used, and four bottleneck groups were used. At the same time, to improve the recognition rate of the model, each bottleneck group was connected to a 3×3 convolutional layer to enhance regional feature extraction and increase the number of feature maps. Finally, a black ice recognition experiment was performed on the constructed infrared road black ice dataset. The network model proposed in this paper had an accurate recognition rate of 99.07% for black ice.

Drawbar Pull Estimation in Agricultural Tractor Tires on Asphalt Road Surface using Magic Formula (Magic Formula를 이용한 아스팔트 노면에서의 농업용 트랙터의 견인력 추정)

  • Kim, Kyeong-Dae;Kim, Ji-Tae;Ahn, Da-Vin;Park, Jung-Ho;Cho, Seung-Je;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.92-99
    • /
    • 2021
  • Agricultural tractors drive and operate both off-road and on-road. Tire-road interaction significantly affects the tractive performance of a tractor, which is difficult to predict numerically. Many empirical models have been developed to predict the tractive performance of tractors using the cone index, which can be measured through simple tests. However, a magic formula model that can determine the tractive performance without a cone index can be used instead of traditional empirical models as the cone index cannot be measured on asphalt roads. The aim of this study was to predict the tractive performance of a tractor using the magic formula tire model. The traction force of the tires on an asphalt road was measured using an agricultural tractor. The dynamic wheel load was calculated to derive the coefficients of the traction-slip curve using the measured static wheel load and drawbar pull of the tractor. Curve fitting was performed to fit the experimental data using the magic formula. The parameters of the magic formula tire model were well identified, and the model successfully determined the coefficient of traction of the tractor.

Estimation of Road Sections Vulnerable to Black Ice Using Road Surface Temperatures Obtained by a Mobile Road Weather Observation Vehicle (도로기상차량으로 관측한 노면온도자료를 이용한 도로살얼음 취약 구간 산정)

  • Park, Moon-Soo;Kang, Minsoo;Kim, Sang-Heon;Jung, Hyun-Chae;Jang, Seong-Been;You, Dong-Gill;Ryu, Seong-Hyen
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.525-537
    • /
    • 2021
  • Black ices on road surfaces in winter tend to cause severe and terrible accidents. It is very difficult to detect black ice events in advance due to their localities as well as sensitivities to surface and upper meteorological variables. This study develops a methodology to detect the road sections vulnerable to black ice with the use of road surface temperature data obtained from a mobile road weather observation vehicle. The 7 experiments were conducted on the route from Nam-Wonju IC to Nam-Andong IC (132.5 km) on the Jungang Expressway during the period from December 2020 to February 2021. Firstly, temporal road surface temperature data were converted to the spatial data with a 50 m resolution. Then, the spatial road surface temperature was normalized with zero mean and one standard deviation using a simple normalization, a linear de-trend and normalization, and a low-pass filter and normalization. The resulting road thermal map was calculated in terms of road surface temperature differences. A road ice index was suggested using the normalized road temperatures and their horizontal differences. Road sections vulnerable to black ice were derived from road ice indices and verified with respect to road geometry and sky view, etc. It was found that black ice could occur not only over bridges, but also roads with a low sky view factor. These results are expected to be applicable to the alarm service for black ice to drivers.