Naive Bayesian classifiers 네이브 베이지안 분류기는 샘플 데이터로부터 쉽게 구현될 수 있는 강력하고도 많이 사용되는 형식의 분류기다. 그러나 강한 조건부 독립성으로 인하여 효율이 저하되는 분류 결과를 초래한다. 일반적으로 네이브 베이지안 분류기는 연속성을 가진 특징 데이터의 우도를 처리하기 위해 가우시안 분산을 사용한다. 속성들의 확률밀도는 항상 가우시안 분산에 적합한 것만은 아니다. 또 다른 형식의 분류기는 지도학습을 통해 퍼지 규칙과 퍼지집합을 학습할 수 있는 퍼지신경망이다. 퍼지신경망과 네이브 베이지안 분류기간에는 구조적 유사성을 가지고 있기 때문에 퍼지신경망으로 학습된 분산 그래프를 네이브 베이지안 분류기에 적용하고자 하는 방안이 본 연구의 목적이다. 따라서 네이브 베이지안 분류기에 가우시안 분산 그래프를 사용한 결과와 퍼지 분산 그래프를 사용한 결과를 비교하였다. 이를 위해 leukemia와 colon의 DNA 마이크로어레이 데이터를 적용하여 분류하였다. 네이브 베이지안 분류기에 퍼지 분산 그래프를 사용한 결과 가우시안 분산 그래프를 사용한 결과보다 더 신뢰성이 있음을 보여주었다.
퍼지 규칙 기반 시스템에서 분류 및 경계를 결정하기 위한 방법으로 퍼지 규칙을 학습하는 다양한 방법들이 제안되고 있다. 그리고 추론 규칙간의 상관성을 고려하여 불필요한 속성을 제거함으로써 좀 더 효율적인 추론 결과를 얻을 수 있다. 따라서 본 논문에서는 퍼지 규칙 기반 시스템에서 각 규칙에 따른 결정 테이블를 작성하고 러프집합을 이용하여 불필요한 속성을 제거하였으며 규칙의 확신도에 퍼지 네이브 베이스 이론을 적용한 추론 방법을 제안한다.
멀티 에이전트(Multi-Agent)들이 상호 연동하여 공통의 목적을 수행하기 위해서는 에이전트를 관리하는 매니지먼트 에이전트(Management Agent)가 요구되고, 주어진 환경에서 획득한 제한된 지식을 효율적으로 이용하는 방법이 필요하다. 본 논문에서는 네이브 베이즈 이론을 적용하여 각 에이전트의 속성값(Attribute Value)에 따라 매니지먼트 에이전트가 각 에이전트를 효율적으로 관리할 수 있는 NBMA(Naive Bayes Management Agent)를 제안하고 이를 이용한 미팅 참가 결정 에이전트를 제안한다. NBMA는 고유한 속성을 지닌 여러 개의 하위 에이전트와 그들을 관리하는 매니지먼트 에이전트로 구성되어 있으며 매니지먼트 에이전트는 하위 에이전트들의 고유한 속성에 대한 메타지식을 이용하여 관리 하도록 한다. 하위 에이전트간에는 상호 조건부 독립(mutually conditional independence) 가정하에 복수의 속성값을 취하며 이러한 속성값에 따라 매니지먼트 에이전트가 조정과 의사결정을 하도록 한다.
본 연구에서는 웹 서비스의 종류가 급격히 증가하게 됨에 따라 유사 패턴의 사용자들을 위해 웹 링크 서비스를 일부 추천해주는 시스템에 대해 설계 및 구현하였다. 본 연구를 통해 유사 패턴의 웹 서비스 이용자들의 그룹을 정의 하는데 네이브 베이지안 알고리즘을 적응하고 그에 따른 새로운 사용자에 대한 그룹정의도 함께 한다. 유사 패턴의 그룹의 사용자들에게 적합한 링크들을 추천해준다. 기존의 추천 시스템에서 제공하는 추천 아이템을 제정의 하는 것이 아니라 기존의 웹 서비스 페이지에서 유사 패턴의 그룹에게만 일부의 링크들만 활성화 하여 제공한다. 이는 웹 서비스의 일부 링크 서비스들만을 활성화 하여 추천 해줌으로써 웹 서비스의 모바일 디바이스등에 제공시 웹 페이지의 소스를 경감하여 좀 더 수월하게 서비스 할 수 있다. 또한 사용자들도 추천 받은 링크만을 접근하게 됨에 따라 접근하지 않는 다른 서비스에 대한 링크 소스가 빠진 웹 페이지만 제공 받을 수 있다.
The origin of the Roman public basilica is Rome's indigenous style morphologically but actually it seems that developed the Greek semi-open style stoa into the Roman practical interior space. In the early ages, the arrangement of Roman forum had been planned high symbolical temple as the center but gradually changed into the basilica centered which were used often by citizen. Through the Roman period, the important types of early Roman basilica have Fano basilica in the first century BC, Pompei basilica of mid period in the first century AD, Doclear basilica with apse as late type in the second century AD. Pompei type well characterized the feature of Roman public basilica among them. The result of the floor plan analysis shows that the long side access to the interior space is over 76 percent of examples and nearly 70 percent have no apse and the average of vertical horizontal length ratio presents as 1:2.3. The typical plan of Roman public basilica can be defined that most of access are being entered from one of the long side, and most of basilica have no apse, and normally having inner columns arranged in one or more concentric rectangles around nave as a center.
전자 상거래 분야에서 증가하고 있는 정보들 중에 사용자가 자신의 기호에 맞는 정보 만들 만을 선택하기 위해서 각 정보를 일일이 검토하기 어려운 일이다. 이를 보완하기 위해 정보 여과 기술이 사용되는데 최근 추천 시스템은 협력적 여과 시스템의 희박성과 초기 평가 문제를 해결하기 위해서 내용 기반 여과 시스템과 협력적 적과 시스템을 병합하늘 방법을 사용한다. 본 논문에서는 혼합형 추천시스템에서의 예측의 정확도를 향상시키기 위해서 조화 평균 가중치(CBCF_harmonic_mean)를 사용자 유사도 가중치를 구할 때 사용한다. 내용 기반의 성능을 고려하여 임계치 값을 45로 설정한 후, n/45의 Significance weight을 사용자 유사도 가중치에 적용한다. 제안된 방법의 성능을 평가하기 위해서 기존의 협력적 여과 시스템과 내용 기반 여과 시스템을 병합한 방법과 비교 평가하였다. 그 결과 기존의 협력적 여과 시스템의 문제점을 해결하여 예측의 정확도를 높이는데 효과적임을 확인하였다.
협력적 필터링은 피어슨 상관 계수에 의해 유사도를 구하고, 선호도를 기반으로 이웃 선정 방법을 사용하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 및 확장성의 문제를 가지고 있다. 이러한 문제점을 개선하기 위하여 아이템 기반 협력적 필터링이 실용화되었으나 아이템의 속성을 반영하지는 못한다. 본 논문에서는 기존 추천 시스템의 문제점을 보완하기 위하여 분류 속성과 Naive Bayesian을 이용한 사용자와 아이템 기반의 협력적 필터링을 제안하였다. 제안한 방법에서는 희박성 문제를 해결하기 위하여 명시적 데이터에 기반한 아이템 유사도와 묵시적 데이터에 기반한 사용자 유사도를 복합적으로 참조한다. 참조 결과에 대해 Naive Bayesian을 적용한다. 또한 속성을 반영하기 위해 아이템 분류속성간의 유사관계 순위를 아이템 유사도 계산에 반영함으로써 정확성을 높일 수 있었다.
기존의 협력적 필터링 기술을 이용한 사용자 선호도 예측 방법에서는 피어슨 상관 계수에 의해 사용자의 유사도를 구하고, 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법을 사용하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하였다. 본 논문에서는 기존의 사용자 선호도 예측 방법의 문제점을 보완하기 위하여 베이지안 추정치가 부여된 유사도 가중치와 연관 사용자 군집을 이용한 선호도 예측 시스템을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서의 희박성 문제를 해결하기 위하여 Association Rule Hypergraph Partitioning 알고리즘을 사용하여 사용자를 장르별로 군집하며 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도를 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 기존의 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게 하여 예측의 정확도를 높일 수 있다. 제안된 방법의 성능을 평가하기 위해서 기존의 협력적 필터링 기술과 비교 평가하였다. 그 결과 기존의 협력적 필터링 기술의 문제점을 해결하여 예측의 정확도를 높이는데 효과적임을 확인하였다.
추천 시스템에 있어서 협력적 필터링 기술은 많은 연구가 되고 있다. 그러나 협력적 필터링 기술을 이용한 추천 시스템은 초기 평가 문제와 희박성 문제가 발생한다. 이를 해결하기 위해서 본 논문에서는 선호도 재 계산을 위한 연관 사용자 군집과 베이지안 추정치를 이용한 사용자 선호도 예측 방법을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서 아이템의 속성을 고려하지 않는 단점을 보완하기 위해서 선호도에 가장 크게 영향을 미치는 대표 장르를 추출하여 유사한 이웃을 찾아 낼 때 예측에 이용하는 Representative Attribute-Neighborhood 방법을 사용한다. 협력적 필터링의 알고리즘에 군집 아이템 백터 내의 특정 아이템의 선호도를 재계산 하기 위한 연관 사용자 군집 분석을 적용하여 성능 향상을 하였다. 또 초기 평가 문제와 희박성 문제를 해결하기 위하여 Association Rule Hypergraph Partitioning 알고리즘을 사용하여 사용자를 장르별로 군집한다. 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도를 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게하여 예측의 정확도를 높일 수 있다. 제안된 방법은 기존의 방법보다 높은 성능을 나타냄을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.