• Title/Summary/Keyword: 넓이 개념

Search Result 46, Processing Time 0.017 seconds

Examining Students' Conceptions about the Area of Geometric Figures (초등학교 학생들의 넓이 개념 이해도 조사 - 초등학교 6학년 학생들을 중심으로-)

  • Na, Gwisoo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.3
    • /
    • pp.451-469
    • /
    • 2012
  • This research intends to examine how 6th graders (age 12) conceptualize the area of geometric figures. In this research, 4 problems were given to 122 students, which the 4 problems correspond to understanding area concept, finding the area of geometric figures-including rectangular, parallelogram, and triangle, writing the area formula for finding area of geometric figures, and explaining the reason why the area formula holds. As the results of the study, we identified that students revealed the most low achievement in the understanding area concept, and lower achievement in explaining the reason why the area formula holds, writing the area formula, finding the area of geometric figures in order. In based on the results, we suggested the didactical implication for improving the students' conception about the area of geometric figures.

  • PDF

다각형의 넓이 및 그 활용에 관한 연구

  • Han, In-Gi;Sin, Hyeon-Yong
    • Communications of Mathematical Education
    • /
    • v.12
    • /
    • pp.155-170
    • /
    • 2001
  • 중등학교 수학교육 분야에서 기하 영역과 관련된 많은 연구들을 볼 수 있는데, 이들 중에서 도형에 관련된 다양한 개념 자체에 대한 심도 있는 논의는 많이 이루어지지 않았다. 예를 들어, 우리에게 가장 친숙한 개념들 중의 하나가 넓이임에도 불구하고, 왜 한 변의 길이가 a인 정사각형의 넓이가 a$^2$인가? 와 같은 물음은 그리 쉽지 않은 질문이 될 것이다. 그리고, 다각형의 넓이 자체는 다양한 수학 문제의 해결을 위한 중요한 도구이지만, 넓이를 활용한 다양한 문제해결의 경험을 제공하지 못하고 있다. 본 연구에서는 다양한 다각형들의 넓이를 규정하는 공식들을 유도하고, 유도된 넓이의 공식들을 활용한 다양한 문제해결의 아이디어를 제시하고, 이를 통해, 다각형의 넓이를 활용한 효율적인 수학 교수-학습을 위한 접근을 모색할 것이다.

  • PDF

Epistemological Obstacles in the Learning of Area in Plane Figures (평면도형의 넓이 학습에서 나타나는 인식론적 장애)

  • Park, Eun-Yul;Paik, Suck-Yoon
    • Journal of Educational Research in Mathematics
    • /
    • v.20 no.3
    • /
    • pp.305-322
    • /
    • 2010
  • The epistemological obstacles in the area learning of plane figure can be categorized into two types that is closely related to an attribute of measurement and is strongly connected with unit square. First, reasons for the obstacle related to an attribute of measurement are that 'area' is in conflict. with 'length' and the definition of 'plane figure' is not accordance with that of 'measurement'. Second, the causes of epistemological obstacles related to unit square are that unit square is not a basic unit to students and students have little understanding of the conception of the two dimensions. Thus, To overcome the obstacle related to an attribute of measurement, students must be able to distinguish between 'area' and 'length' through a variety of measurement activities. And, the definition of area needs to be redefined with the conception of measurement. Also, the textbook should make it possible to help students to induce the formula with the conception of 'array' and facilitate the application of formula in an integrated way. Meanwhile, To overcome obstacles related to unit square, authentic subject matter of real life and the various shapes of area need to be introduced in order for students to practice sufficient activities of each measure stage. Furthermore, teachers should seek for the pedagogical ways such as concrete manipulable activities to help them to grasp the continuous feature of the conception of area. Finally, it must be study on epistemological obstacles for good understanding. As present the cause and the teaching implication of epistemological obstacles through the research of epistemological obstacles, it must be solved.

  • PDF

A Critical Study on the Teaching-Learning Approach of the SMSG Focusing on the Area Concept (넓이 개념의 SMSG 교수-학습 방식에 대한 비판적 고찰)

  • Park, Sun-Yong;Choi, Ji-Sun;Park, Kyo-Sik
    • School Mathematics
    • /
    • v.10 no.1
    • /
    • pp.123-138
    • /
    • 2008
  • The objective of this paper is to reveal the cause of failure of New Math in the field of the SMSG area education from the didactical point of view. At first, we analyzed Euclid's (Elements), De Morgan's (Elements of arithmetic), and Legendre's (Elements of geometry and trigonometry) in order to identify characteristics of the area conception in the SMSG. And by analyzing the controversy between Wittenberg(1963) and Moise(1963), we found that the elementariness and the mental object of the area concept are the key of the success of SMSG's approach. As a result, we conclude that SMSG's approach became separated from the mathematical contents of the similarity concept, the idea of same-area, incommensurability and so on. In this account, we disclosed that New Math gave rise to the lack of elementariness and geometrical mental object, which was the fundamental cause of failure of New Math.

  • PDF

A Comparative Analysis of Pi and the Area of a Circle in Mathematics Textbooks of Korea, Japan, Singapore and The US (한국, 일본, 싱가포르, 미국 교과서에 제시된 원주율과 원의 넓이 지도 방안의 비교·분석)

  • Choi, Eunah
    • Journal of the Korean School Mathematics Society
    • /
    • v.21 no.4
    • /
    • pp.445-467
    • /
    • 2018
  • In this study, we analyzed the contents of pi and the area of a circle presented in Korean, Japanese, Singapore, and American mathematics textbooks, and drew implications for the teaching of pi and the area of a circle in school mathematics. We developed a textbook analysis framework by theoretical discussions on the concept of the pi based on the various properties of pi and the area of a circle based on the central ideas of measurement and the previous researches on pi and the area of a circle in elementary mathematics. We drew five suggestions for improving the teaching of pi and three suggestions for improving the teaching of the area of a circle in Korean elementary schools.

An axiomatic analysis on contents about the area of plane figures in the elementary school mathematics (초등학교 수학에서의 넓이 지도 내용에 대한 공리적 해석)

  • Do, Jong Hoon;Park, Yun Beom
    • Education of Primary School Mathematics
    • /
    • v.17 no.3
    • /
    • pp.253-263
    • /
    • 2014
  • In this paper we review an axiomatic definition of the area of plane figures with area axioms, discuss what the area axioms mean, and analyze the contents about the area of plane figures in elementary school mathematics from the view point of area axioms. So we evaluate which aspects of the concept of area are emphasized or deemphasized in the current elementary school mathematics textbook.

Axioms underlying area of triangle and volume of triangular pyramid and Hilbert't third problem (삼각형의 넓이와 삼각뿔의 부피에 내재된 공리와 힐베르트의 세 번째 문제)

  • Do, Jonghoon
    • Journal of the Korean School Mathematics Society
    • /
    • v.18 no.4
    • /
    • pp.371-385
    • /
    • 2015
  • In this paper we investigate the axioms defining area and volume so that revisit area formula for triangle, volume formula for triangular pyramid, and related contents in school mathematics from the view point of axiomatic method and Hilbert's third problem.

적분교육을 위한 비쥬얼베이직 프로그램 설계

  • Lee, Seon-Gu;Lee, Gyu-Bong
    • Communications of Mathematical Education
    • /
    • v.12
    • /
    • pp.281-301
    • /
    • 2001
  • 본 논문은 고등학교 제7차 교육과정 중 수학 I 과 미분적분학에서 나오는 적분 단원의 교수 학습을 위해 Visual Basic을 사용하여 제작한 프로그램의 설계과정과 그 기능을 기술하였다. 먼저, 적분의 개념을 이끌어 내기 위한 도구인 “구분구적법”의 설명을 위해 원을 포함하는 사각형과 원에 포함된 사각형들의 개수와 면적에 대해 원을 나누는 사각형의 한 변의 길이를 조절해감으로서 원의 실제 면적에 접근해 가는 과정을 보여줄 수 있으며, 또한 “정적분”, “넓이”, “두 곡선 사이의 넓이”를 구하는 프로그램을 이용하여 학생들이 각각의 개념을 프로그램을 실행하며 시각적으로 확인할 수 있도록 설계하였다. 이 프로그램은 일선 학교에서 구분구적법과 적분, 넓이의 개념을 시각적으로 이해할 수 있는 자료로 활용될 수 있을 것이다.

  • PDF

An Analysis of Pre-Service Teachers' Mathematical Content Knowledge about the Area of a Circle (예비교사의 원의 넓이에 대한 내용지식 분석)

  • Choi, Eun Ah;Kang, Hyangim
    • School Mathematics
    • /
    • v.16 no.4
    • /
    • pp.763-782
    • /
    • 2014
  • The purpose of this study is to investigate mathematics content knowledge(MCK) of pre-service teachers about the area of a circle. 53 pre-service teachers were asked to perform four tasks based on the central ideas of measurement for the area of a circle. The results of this study are as follows. First, pre-service teachers had some difficulty in describing the meaning of the area of a circle. Quite a few of them didn't recognize the necessity of counting the number of area units. Secondly, pre-service teachers had insufficient content knowledge about the central ideas of measurement for the area of a circle such as partitioning, unit iteration, rearranging, structuring an array and approximation. Lastly, few pre-service teachers understood the concept of actual infinity. Most students regarded the rectangle as the figure having the approximation error instead of the limitation from rearranging the parts of a circle.

  • PDF

A Reconstruction of Area Unit of Elementary Mathematics Textbook Based on Freudenthal's Mathematisation Theory (Freudenthal의 수학화 이론에 근거한 제 7차 초등수학 교과서 5-가 단계 넓이 단원의 재구성)

  • You, Mi-Hyun;Kang, Heung-Kyu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.1
    • /
    • pp.115-140
    • /
    • 2009
  • Freudenthal has advocated the mathematisation theory. Mathematisation is an activity which endow the reality with order, through organizing phenomena. According to mathematisation theory, the departure of children's learning of mathematics is not ready-made formal mathematics, but reality which contains mathematical germination. In the first place, children mathematise reality through informal method, secondly this resulting reality is mathematised by new tool. Through survey, it turns out that area unit of Korea's seventh elementary mathematics textbook is not correspond to mathematisation theory. In that textbook, the area formular is hastily presented without sufficient real context, and the relational understanding of area concept is overwhelmed by the practice of the area formular. In this thesis, first of all, I will reconstruct area unit of seventh elementary textbook according to Freudenthal's mathematisation theory. Next, I will perform teaching experiment which is ruled by new lesson design. Lastly, I analysed the effects of teaching experiment. Through this study, I obtained the following results and suggestions. First, the mathematisation was effective on the understanding of area concept. Secondly, in both experimental and comparative class, rich-insight children more successfully achieved than poor-insight ones in the task which asked testee comparison of area from a view of number of unit square. This result show the importance of insight in mathematics education. Thirdly, in the task which asked testee computing area of figures given on lattice, experimental class handled more diverse informal strategy than comparative class. Fourthly, both experimental and comparative class showed low achievement in the task which asked testee computing area of figures by the use of Cavalieri's principle. Fifthly, Experiment class successfully achieved in the area computing task which resulting value was fraction or decimal fraction. Presently, Korea's seventh elementary mathematics textbook is excluding the area computing task which resulting value is fraction or decimal fraction. By the aid of this research, I suggest that we might progressively consider the introduction that case. Sixthly, both experimental and comparative class easily understood the relation between area and perimeter of plane figures. This result show that area and perimeter concept are integratively lessoned.

  • PDF