• Title/Summary/Keyword: 냉.난방 부하

Search Result 34, Processing Time 0.021 seconds

Heating and Cooling Energy Demand Evaluating of Standard Houses According to Layer Component of Masonry, Concrete and Wood Frame Using PHPP (PHPP를 활용한 조적, 콘크리트, 목조 레이어 구성별 표준주택 냉·난방 에너지 요구량 평가)

  • Kang, Yujin;Lee, Junhee;Lee, Hwayoung;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • A lot of the energy are consumed on heating and cooling in buildings. The buildings need to minimize the heating and cooling loads for $CO_2$ emissions and energy consumption reduction. In recently, also demand of detached houses were increase while the residential culture was changed. The structure of the domestic detached houses can be divided into masonry, concrete, wood frame houses. Therefore, in this study, the heating and cooling load and energy demand were analyzed on the equal area detached house consisting of three structural methods (Masonry, Concrete, Wood frame). Layer of wall, roof, and floor were composited by structure. Thermal transmittance (U-value) of each layer was using the PHPP calculation for considering stud, such as the wood frame wall. In addition, the case of without considering for studs in wood frame wall (Non-studs) was analyzed in order to compare the difference between studs or not. Analysis was performed using self-developed heating and cooling load calculation program (CHLC) based excel and ECO2. The results of cooling and heating load and energy demand showed the highest values in the wood frame structure, and the concrete structure were confirmed to maintain a high value secondly. Two structure were determined to be disadvantageous on the energy consumption. Consequently, the masonry structure have an advantage over the other structure under the identical conditions. It was determined that if the except for thermal bridges due to the studs in the wood frame structure, it can be reduced the energy consumption.

Comparative Studies on Heating and Cooling Loads' of a Building Varied by Annual Weather Data (연도별 기상데이터를 활용한 건물의 냉.난방부하 특성 비교)

  • Lee, Ji-Hoon;Hwang, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.35 no.3
    • /
    • pp.265-270
    • /
    • 2011
  • The purpose of this study is to compare and analyze the differences of a building's heating and cooling loads depending on the weather variation. Followings are the results. The temperature, humidity and wind speeds of standard year are bigger than those of 2006~2009. The 2006~2009's total horizontal solar irradiance is greater than that of standard year, and the direct solar irradiance of standard year is bigger in winter and vice versa in summer. As results of simulation on heating and cooling loads, it is difficult to find out the bilateral influences between maximum thermal loads and annual's. The equivalent-time operating ratio(EOR) is defined on this study to estimate the differences between year and year, and the EOR of standard year shows low value comparing to 2006~2009 years'.

흡수식을 이용한 에너지 장거리 수송/변환 기술

  • 강용태
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.33 no.3
    • /
    • pp.11-18
    • /
    • 2004
  • 흡수식 사이클을 이용한 에너지의 장거리수송 기술을 소개하고 경제성평가 결과를 제시한다. 현재 에너지수요 측면에서 가장 높은 증가율을 보이고 있는 것이 바로 대도시 및 산업단지의 냉$.$난방 및 급탕용 에너지이다. 냉$.$난방에 사용되는 에너지는 10$0^{\circ}C$미만의 저온으로서 고열원 에너지인 화석연료의 사용은 에너지사용 면에서 비효율적이다. 따라서 산업지 역에서 버려지는 폐열원등의 각종 미활용에너지를 이용하여 냉$.$난방부하를 충족시킬 수 있는 에너지 절약형 시스템의 개발이 매우 중요한 과제로 대두되고 있다. 일반적으로 미활용에너지 및 폐열에너지 공급지역은 소비지역으로부터 멀리 떨어져 있다. 지금까지 흡수식시스템은 냉동 및 냉방의 개념에서 기술개발 및 실용적운전이 이루어져 왔으나, 본 논문에서는 흡수식시스템을 이용한 에너지의 장거리수송 및 변환 기술을 소개하고자 한다.

  • PDF

Study on Energy Performance And Economic Evaluation of Windows System with Built-in Type Blinds (블라인드 내장형 창호시스템의 에너지 성능 및 경제성 평가에 관한 연구)

  • Joe, Won-Hwa;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • This study evaluated the energy efficiency of a windows system using built-in blinds, with regard to their insulation performance and their blocking of solar radiation. The study took advantage of the "Physibel Voltra" program as a physical simulation of heat transfer. To simulate the "Physibel Voltra" program, I practiced a mock-up test to determine heating quality and translation condition. I analyzed the propensity to annual energy consumption, the annual quantity of heat transfer, and the annual cooling and heating cost through a computer simulation for one general household in an apartment building. In the test, it was found that compared to a general windows system, a windows system with built-in blinds reduced the annual heat transfer by 10% in cooling states and by 11% in heating states when the blind was up. When the blind was down, the windows system with built-in blinds reduced the annual heat transfer by 25% in cooling states and 30% in heating states. When a windows system with built-in blinds is compared with a general windows system, the quantity of cooling and heating loads is reduced by 283.3kw in cooling states and 76.3kw in heating states. This leads to a reduction in the required cooling and heating energy of 359.6kw per house. It is thus judged that the use of a windows system with built-in blinds is advantageous in terms of reducing greenhouse gas emissions, because the annual TOE (tons of oil equivalent) per house is reduced by 0.078TOE, while $tCO_2$ is reduced by $0.16tCO_2$. In addition, compared with a general windows system, the cost of cooling and heating loads in the system reduces the annual cooling cost by 100,000won, and the annual heating cost by 50,000won. Ultimately, this means that cooling and heating loads are cut by 150,000won per year.

Capacity and Power Input Performance Curves Creation of Water-cooled VRF Heat Pump for EnergyPlus (EnergyPlus 해석용 수랭식 VRF 히트펌프의 냉·난방 능력 및 소비전력 예측식 산출 기법)

  • Kim, Min-Ji;Kwon, Hyuk-Joo;Lee, Kwang Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • Variable refrigerant flow (VRF) systems have recently attracted attention in many countries due to a variety of advantages over conventional system. Especially, the water-cooled VRF heat pump, including geothermal heat pump, is a system that accurately controls the flow rate of refrigerant for the improved efficiency under part load operation. This paper describe the process of generating the cooling and heating energy performance curve coefficients and performance expressions for modeling water cooled VRF system using EnergyPlus. Through this study, the process for generating performance curves can be implemented into EnergyPlus or other comparable building energy analysis tools for the long-term evaluation of heat pump under dynamic conditions.

An Analysis of Thermal Loads Depending on Korea Building Insulation Standard and the Optimum Insulation Standard (국내 건물 단열기준에 따른 냉.난방 부하 분석 및 최적 단열기준에 관한 고찰)

  • Seo, Sung-Mo;Park, Jin-Chul;Rhee, Eun-Ku
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.146-155
    • /
    • 2011
  • Sustainable building is getting more and more important topic in 21C. Following this trend, building energy saving standard has been reinforced in Korea. Especially, insulation standards are revised continuously after1979. This study aims to evaluate the correlation between the revised insulation standards and heating and cooling loads of a residential building. This study shows that the standard of insulation is more related with heating load than cooling load, and cooling load is more related with other sources such as glass types and solar incidence through windows. In case of highly-insulated building such Passive Houses or Zero Energy Houses, the cooling load should also be considered as important as heating load when revising the building energy saving regulations in the future.

Interaction Analysis between Cooling-to-Heating Load Ratio and Primary Energy Consumption of HVAC&R System for Building Energy Conservation (건물의 냉, 난방 부하비율과 HVAC&R 시스템 1차 에너지 소비량의 상관관계분석 및 합리적 설계방안 연구)

  • Cho, Jinkyun;Kim, Jinho;Lee, Suengjae;Kang, Hosuk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.113-122
    • /
    • 2015
  • HVAC&R systems account for more than 50% of the energy consumption of buildings. The purpose of this study is to propose an optimal design method for the HVAC&R system and to examine the possibility for the energy conservation of a selected system. The energy demand for cooling and heating is determined by using TRNSYS and HEET. By an interaction between total system efficiency and cooling-to-heating load ratio, the optimal HVAC&R systems will be decided. The results showed that this proposed method is significantly capable of determining optimal system and building design for saving energy.

CES(Community Energy Supply System) 사업

  • 박용순;정용우
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.29 no.1
    • /
    • pp.57-67
    • /
    • 2000
  • 최근 국민소득수준의 향상을 따라 여름철 전력 수요가 폭증하므로 전력안정 공급을 위한 특별 대책이 필요한 실정이고 환경적인 측면이나 수용가 입장에서 만족스러운 새로운 냉·난방, 전기 공급시스템의 개발·적용이 필요하다. 선진국의 경우, 소규모의 집단에너지 공급이 주류를 이루고 있으며 특히 소규모 열병합 발전시 생산되는 전기, 지역난방열 이외에 냉방에 필요한 냉수를 중앙열원에서 동빌딩을 중심으로하는 구역형 집단에너지 시스템(Community Energy Supply System)등 소규모지역 난냉방 공급방식이 활성화되어 있으므로, 우리나라에서도 냉방/난방/전기부하 패턴 및 하절기 피크부하 경감에 대한 기여도 등을 고려한 경제성있는 최적시스템 구성이 가능한지 검토할 필요가 있다. 소규모 집단에너지사업은 대규모 사업과는 달리 적정 수요예측이 가능하므로 효율적인 초기 투자가 이루어질 수 있으며, 상업용 및 사업용 빌딩 등을 중심으로 부하밀도가 높은 구역을 대상으로 하명서 해당 부하패턴에 적합한 효율적인 시스템의 구성을 통해 수익성이 확보된다면 국가 에너지절약 및 한전의 여름철 전력 피크부하 경감, 대기 환경공해 감소, 도심 도시미관 향상 등의 사업효과가 기대된다. 본문에서는 이러한 소규모 집단에너지시스템 개요 및 국내외 공급 현황, 국내 적용환경, 적용 가능에너지 검토 열원시스템의 기본방향 등에 대하여 언급하고자 한다.

  • PDF

무선센서 네트워크를 이용한 실내환경 통합제어 기술

  • Kim, Gi-Dong;Jang, Jin-Yeop
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.39 no.3
    • /
    • pp.43-48
    • /
    • 2010
  • 건물의 친환경 자동제어를 위하여 부하에 따라 센서를 조밀하게 설치하여 꼭 필요한 곳에 냉 난방을 실현하는 방법으로 Ad-hoc Mesh Networking 기술을 활용한 실내환경 모니터링용 무선센서 기술을 소개하고자 한다.

  • PDF