• Title/Summary/Keyword: 냉방열량

Search Result 24, Processing Time 0.021 seconds

A Feasibility Study of Educational Calorimeter through Performance Evaluation of Automotive Air-conditioning Heat Exchangers (자동차 에어컨 열교환기 성능평가를 통한 교육용 열량계의 타당성 검토)

  • Song, Jun-Ho;Kang, Kyung-Ho;Lee, Kee-Man
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.583-586
    • /
    • 2012
  • 현대의 지속적인 기술개발과 산업발전은 삶의 질을 향상시키는 긍정적인 시각이 있는 반면 심각한 환경문제를 안고 있다. 자동차 공조기술도 지구 환경보호라는 거대한 과제와 탑승자의 쾌적성 만족이라는 두 가지 다른 관점을 동시에 충족시켜야 하는 과제를 가지고 있으며, 이 분야 산업에 전문적인 지식으로 공조 열량계 운용에 대한 경험이 대학 교육과정에서도 강조되고 있다. 본 논문에서는 대학 교육과정 특성상 장비의 활용성, 경제성, 장비설치 및 취급의 용이성 등을 고려하여 교육용으로 적합한 간이 열량계를 제작하였다. 교육 및 연구용으로 제작한 간이 열량계의 타당성을 확인하기위해 현재 가장 많이 쓰이고 있는 R134a 자동차용 냉방시스템을 구성하여 압축기 회전속도, 실내 풍량, 냉매 충전량 등을 변수로 하여 열교환기 냉방성능을 평가한 후 비교하여 교육용 열량계의 유용성을 확인하였다.

  • PDF

Empirical Analysis on the Cooling Load and Evaporation Efficiency of Fogging System in Greenhouses (온실의 냉방부하 및 포그시스템의 증발효율 실험분석)

  • Nam, Sang-Woon;Seo, Dong-Uk;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • In order to develop the cooling load estimation method in the greenhouse, the cooling load calculation formula based on the heat balance method was constructed and verified by the actual cooling load measured in the fog cooling greenhouse. To examine the ventilation heat transfer in the cooling load calculation formula, we measured ventilation rates in the experimental greenhouse which a cooling system was not operated. The ventilation heat transfer by a heat balance method showed a relatively good agreement. Evaporation efficiencies of the two-fluid fogging system were a range of 0.3 to 0.94, average 0.67, and it showed that they increased as the ventilation rate increased. We measured thermal environments in a fog cooling greenhouse, and calculated cooling load by heat balance equation. Also we calculated evaporative cooling energy by measuring the sprayed amount in the fogging system. And by comparing those two results, we could verify that the calculated and the measured cooling load showed a relatively similar trend. When the cooling load was low, the measured value was slightly larger than calculated, when the cooling load was high, it has been found to be smaller than calculated. In designing the greenhouse cooling system, the capacity of cooling equipment is determined by the maximum cooling load. We have to consider the safety factor when installed capacity is estimated, so a cooling load calculation method presented in this study could be applied to the greenhouse environmental design.

Analysis on Cooling Effects of the Vertical Type Geothermal Heat Pump System Installed in a Greenhouse for Raising Seedling (수직형 지열히트펌프 시스템의 육묘 온실 냉방 효과 분석)

  • Kang, Youn Ku;Ryou, Young Sun;Kim, Jong Goo;Kim, Young Hwa;Jang, Jae Kyoung
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.19-25
    • /
    • 2013
  • In this study, the cooling experiment was carried out in $1,650m^2$ area of the seedling greenhouse from June 6, 2011 to september 18, 2011 with the vertical type geothermal heat pump system of 350 kW scale (175 kW ${\times}$ 2 units) installed in the greenhouse, cooling effects were analyzed and we tried to find more effective operation methods of the geothermal heat pump system. In case of one unit heat pump (175 kW) operation, when evaporator inlet water temperature changed from $13.0^{\circ}C$ to $15.5^{\circ}C$, cooling COP of the system was in 1.1~1.8 range and in case of two unit heat pump (350 kW) operation, when evaporator inlet water temperature changed from 13.0 to 15.5, cooling COP of the system was in 2.0~2.7 range. The accumulated cooling heat quantity of June, July, August and September was 14,718.6, 26,765.1, 28,437.2 and 10,065.0 kWh, respectively.

A Study on the Cascade Hybrid Cooling/Refrigeration Cycle Equipped With Intercooler and Air-Cooled Condenser in Series (인터쿨러와 공랭식 응축기를 동시에 사용하는 냉방-냉동 겸용 캐스케이드 사이클에 대한 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.353-362
    • /
    • 2019
  • Thermodynamic analysis of cascade refrigeration systems has attracted considerable research attention. On the other hand, a system evaluation based on thermodynamic analyses of the individual parts, including the evaporator, condenser, intercooler, expansion valve, etc., has received less attention. In this study, performance analysis was conducted on a cascade refrigeration system, which has an individual cooling and refrigeration evaporator, and equips the intercooler and air-cooled condenser in a series in a lower cycle. The thermo-fluid design was then performed on the major components of the system - upper condenser, lower condenser, cooling evaporator, refrigeration evaporator, intercooler, compressor, electronic expansion valve - of 15 kW refrigeration, and 8 kW cooling capacity using R-410A. A series of simulations were conducted on the designed system. The change in outdoor temperature from 26 C to 38 C resulted in the cooling capacity of the lower evaporator remaining approximately the same, whereas it decreased by 9% at the upper evaporator and by 63% at the intercooler. The COP decreased with increasing outdoor temperature. In addition, the COP of the cycle with the intercooler operation was higher that of the cycle without the intercooler operation. Furthermore, the increase in the upper condenser size by two fold increased the upper evaporator by 4%. On the other hand, the lower evaporator capacity remained the same. The COP of the upper cycle increased with increasing upper condenser size, whereas that of the lower cycle remained almost the same. When the size of the lower condenser was increased 2.8 fold, the intercooler capacity increased by 8%, whereas those of upper and the lower evaporator remained approximately the same. Furthermore, the COP of the lower cycle increased with an increase in the lower condenser. On the other hand, the change of the upper condenser was minimal.

Effect on Household Absorption Chiller by the Supply of the Cooling Water (냉각수 보급이 가정용 흡수식 냉난방기의 성능에 미치는 영향)

  • 이호생;김동휘;최병권;김재돌;윤정인
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.267-272
    • /
    • 2002
  • The electric heat pump requiring HCFCs as a refrigerant has been for most residential air-conditioners in Korea. They cause a surge up electric power demand during summer. Moreover, the use of HCFCs and HFCs causes a serious problem to the global environment such as global warming and ozone layer destruction. An absorption chiller and heater could solve such problems. It was built and tested for analyzing the performance of the absorption chiller/heater. Experiment was done with a 1.5RT household absorption chiller and heater. It was experimented that the cooling capacity, gas capacity, COP were researched by the temperature of cooling water. The change of the cooling water temperature have effect the temperature(or pressure) of the parts on absorption chiller The result of the change of the cooling water temperature have the effects of the absorption chillers. This data will help to operate the household absorption chiller and heater.

  • PDF

Cooling Performance of Horizontal Type Geothermal Heat Pump System for Protected Horticulture (시설원예를 위한 수평형 지열 히트펌프의 냉방성능 해석)

  • Ryou, Young-Sun;Kang, Youn-Ku;Kang, Geum-Chun;Kim, Young-Joong;Paek, Yee
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.90-95
    • /
    • 2008
  • It has become a big matter of concerns that the skill and measures against reduction of energy and cost for heating a protected horticultural greenhouse were prepared. But in these days necessity of cooling a protected horticultural greenhouse is on the rise from partial high value added farm products. In this study, therefore, a horizontal type geothermal heat pump system with 10 RT scale to heat and cool a protected horticultural greenhouse and be considered to be cheaper than a vertical type geothermal heat pump system was installed in greenhouse with area of $240\;m^2$. And cooling performances of this system were analysed. As condenser outlet temperature of heat transfer medium fluid rose from $40^{\circ}C$ to $58^{\circ}C$, power consumption of the heat pump was an upturn from 11.5 kW to 15 kW and high pressure rose from 1,617 kPa to 2,450 kPa. Cooling COP had the trend that the higher the ground temperature at 1.75 m went, the lower the COP went. The COP was 2.7 at ground temperature at 1.75 m depth of $25.5^{\circ}C$ and 2.0 at the temperature of $33.5^{\circ}C$ and the heat extraction rate from the greenhouse were 28.8 kW, 26.5 kW respectively at the same ground temperature range. 8 hours after the heat pump was operated, the temperature of ground at 60 cm and 150 cm depth buried a geothermal heat exchanger rose $14.3^{\circ}C$, $15.3^{\circ}C$ respectively, but the temperature of ground at the same depth not buried rose $2.4^{\circ}C$, $4.3^{\circ}C$ respectively. The temperature of heat transfer medium fluid fell $7.5^{\circ}C$ after the fluid passed through geothermal heat exchanger and the fluid rejected average 46 kW to the 1.5 m depth ground. It analyzed the geothermal heat exchanger rejected average 36.8 W/m of the geothermal heat exchanger. Fan coil units in the greenhouse extracted average 28.2 kW from the greenhouse air and the temperature of heat transfer medium fluid rose $4.2^{\circ}C$after the fluid passing through fan coil units. It was analyzed the accumulation energy of thermal storage thank was 321 MJ in 3 hours and the rejection energy of the tank was 313 MJ in 4 hours.

Characteristic Analysis of Hybrid Desiccant Cooling System for District Heating in Residential Environment (지역난방에 연계된 하이브리드 제습냉방시스템의 주거환경에서의 성능 분석)

  • Ahn, Joon;Kim, Jaeyool;Kang, Byung Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.571-579
    • /
    • 2014
  • A series of field tests on hybrid desiccant cooling systems were conducted in July-August, 2013. The temperature and humidity of the supply and return air, power, and heat consumption were monitored and transferred in real time through the Internet. The performance parameters of the cooling system, namely, cooling capacity and COP (coefficient of performance), were evaluated from the measured data and their variations under outdoor conditions was analyzed. It was found that with increase in the outdoor temperature, the total energy decreases and cooling capacity increases whereas the latter decreases with increase in the outdoor humidity. The COP was also found to increase with the increase in outdoor temperature.

A Numerical Simulation of the Atmospheric Fields Related to Urban Heat Island and Anthropogenic Heat Flux (도시열섬과 인공열에 따른 기상장 수치모의)

  • 이화운;김유근;원경미;김미향;임윤규
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.183-184
    • /
    • 2000
  • 도시화가 진행될수록 인구 집중과 고충 건물의 점유 증가를 초래하고 이로 인해 도심내 공장의 증가, 자동차의 폐열량 증가, 겨울철 연료와 여름철 냉방에 의한 에너지 사용량이 증가된다. 이때 방출된 열원으로 인해 도시 열섬의 강도는 커지게 된다. 단위면적에 대해 방출되는 열플럭스가 도시마다 큰 차이를 보이는데(Landsberg, 1981) 시드니 외곽부에 비해 도심내의 연간 에너지 사용량이 360배에 달한다는 것을 보였다. (중략)

  • PDF

A Numerical Simulation of the Atmospheric Fields Related to Anthropogenic Heat Flux and Surface Characteristics (인공열과 지표 특성에 따른 기상장 수치모의)

  • 이화운;김유근;원경미;김미향
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.220-221
    • /
    • 2000
  • 도시화가 진행될수록 인구 집중과 고층 건물의 점유 증가를 초래하고 이로 인해 도심내 공장의 증가, 자동차의 폐열량 증가, 겨울철 연료와 여름철 냉방에 의한 에너지 사용량이 증가된다. 이때 방출된 열원으로 인해 인공열 배출량이 커지게 된다. 단위면적에 대해 방출되는 열플럭스가 도시마다 큰 차이를 보이는데(Landsberg, 1981) 시드니 외곽부에 비해 도심내의 연간 에너지 사용량이 360배에 달한다는 것을 보였다. (중략)

  • PDF

Comparison Between Two Solar Absorption Cooling System Using Single Effect and Single Effect/Double Lift Cycle (일중효용 사이클과 일중효용/2단승온 사이클을 이용한 태양열 흡수식 냉방시스템의 비교)

  • 정시영;이상수;조광운;백남춘
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.267-276
    • /
    • 2000
  • A numerical study has been carried out to find out the optimal design condition of a solar absorption cooling system. The system was composed of solar collectors and an absorption chiller with LiBr/water The System performance with commercial single effect(SE) cycle and a new single effect/double lift(SE/DL) cycle utilizing low temperature hot water was calculated and compared. It was found that the required solar collector area grew exponentially as the overall heat loss coefficient of solar collectors increased. For instance, the required area for cooling capacity of 1 USRT was $17m^2$ if heat loss coefficient was 4 W/$m^2\;cdot\;K$. If heat loss coefficient was doubled($8\;W/m^2\;cdot\;$K), the required collector area was increased by 6 times($100m^2$) .It was also found that the SE-cycle as the heat loss coefficient of solar collectors increased. Generally, a SE/DL-cycle seems to be more advantageous than a SE-cycle if loss coefficient of solar collector is greater than 4 W/$m^2\;cdot\;K$.

  • PDF