• Title/Summary/Keyword: 냉매온도

Search Result 206, Processing Time 0.028 seconds

Simulation of the Mixed Propane Refrigeration Cycle Using a Commercial Chemical Process Simulator (상용성 화학공정모사기를 활용한 혼합냉매 이용 냉동사이클의 전산모사)

  • Cho, Jung-Ho;Kim, Young-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3253-3259
    • /
    • 2009
  • In this study, a computer simulation has been performed for the refrigeration cycle using mixed refrigerants in order to decrease the process stream temperature to $-20^{\circ}C$. Refrigerant supply temperature was assumed to be $-30^{\circ}C$ considering the temperature difference as $10^{\circ}C$ with process stream. Peng-Robinson equation of state model was selected for the computer simulation. A new alpha function proposed by Twu et al was used for an accurate prediction of pure component vapor pressure experimental data. One fluid mixing rules were used for the estimation of mixture vapor-liquid equilibria calculations. A commercial process simulator, PRO/II with PROVISION was utilized for the simulation of the overall refrigeration process. In order to minimize the compressor power consumption, we have optimized the two-stage compression system by varying the first stage compressor outlet pressure. Finally, we could obtain the minimum total power 755.7kW at the first stage compressor outlet pressure, 6 bar.

A Study on the Characteristics of Heat Exchanger in Air-Conditioning System using Alternative Retrigerants (대체냉매를 사용하는 공조기용 열교환기의 특성에 관한 연구)

  • 김남신;이은호;유재석;김기현;최윤호;김권진;김만회;황석렬
    • Journal of Energy Engineering
    • /
    • v.9 no.3
    • /
    • pp.192-201
    • /
    • 2000
  • 증발기와 응축기로 폐회로 냉동 시스템을 구성하여 기존 사용 냉매인 R22와 대체냉매로써 부각되고 있는 R407C, R410A를 사용하여 여러 가지 관 직경과 휜 형상을 가지는 열교환기에 대한 열전달량, 질량유량, 열교환기를 지나가는 냉매의 온도분포 그리고 공기측 압력강하를 측정하였다. 모든 열교환기에서 냉매의 질량유량이 증가함에 따라 열전달량은 증가하였다. R22와 R407C의 경우에 증발기측에서는 거의 같은 열전달량을 나타냈고 응축기측에서는 R407C가 전체적으로 열전달량이 높게 나타났다. 그리고 열교환기의 전달량은 유로의 형상보다는 냉매의 질량유량과 전열면적에 더 많은 영향을 받는다. 공기측 압력 강하는 열수가 많은 열교환기의 경우가 작게 나타났으며 슬릿휜을 가지는 열교환기의 압력강하가 가장 크고 웨이비휜을 가지는 열교환기가 가장 작게 나타났다.

  • PDF

Simulation of a Double Effect Double Stage Absorption Heat Pump for Usage of a Low Temperature Waste Heat (저온 폐열 활용을 위한 2중 효용 2단 흡수식 히트펌프 시뮬레이션)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7736-7744
    • /
    • 2015
  • Considering the significant waste of industrial energy, effective use of low temperature waste heat is extremely important. In this study, a heat pump cycle with double effect and double stage was realized, which escalates the hot water temperature from $50^{\circ}C$ to $70^{\circ}C$ using $160^{\circ}C$ high temperature heat source and $17^{\circ}C$ low temperature heat source. The steam generated in the first generator condenses in the first condenser generating steam in the second generator. The steam condenses in the second condenser and is provided to the second evaporator. Part of the water out of the second evaporator is supplied to the first evaporator, which evaporates using low temperature waste heat. The evaporated steam enters the first absorber and the second evaporator. The steam out of the second evaporator is absorbed into the solution at the second absorber. The hot water temperature is raised in the second condenser and in the second absorber. Proper flow rates and UA values, which satisfied temperature lift $20^{\circ}C$ and COP 1.6, were deduced through trior and error. The COP increases as the temperature of the high temperature water increases, hot water temperature decreases and flow rate increases, waste water temperature and flow rate increases, solution circulation rate decreases. On the other hand, the temperature rise of the hot water increases as the temperature of the high temperature water increases, hot water temperature increases and flow rate decreases, waste water temperature and flow rate increases, solution circulation rate increases. In addition, the COP and hot water temperature rise increase as UAs of the heat exchangers increase.

Performance analysis of 20 kW OTEC power cycle using various working fluids (다양한 작동유체를 이용한 20 kW급 해양온도차 발전 사이클 성능 분석)

  • Yoon, Jung In;Ye, Byung Hyo;Heo, Jung Ho;Kim, Hyun Ju;Lee, Ho Saeng;Son, Chang Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.836-842
    • /
    • 2013
  • In this paper, the 20 kW Ocean Thermal Energy Conversion(OTEC) is newly proposed in order to select the refrigerant that makes the cycle performance be optimized and the performance of 20 kW OTEC applying 15 pure refrigerants and 16 mixed refrigerants is analyzed. The efficiency of system, the mass flow of working fluids and TPP, which is new concepts, are analyzed. In view of cycle efficiency, R32/R152a (87:13) is the highest efficiency among the refrigerants. At the mass flow of working fluid to make the 20 kW electricity, R717 is shown as the lowest value. And in view of TPP in this study, R32/R134a 70:30 is the most optimized refrigerant. The analysis can confirm that the refrigerant is different along with the part of the system, so it is necessary to select the optimized refrigerant for 20 kW OTEC.

A Study on the Temperature Characteristics at the Inlet and the Outlet Pipes of a Refrigerator Drain Condenser (냉장고 배출수 응축기 입출구 배관에서의 온도 특성에 관한 연구)

  • Ha, Ji Soo;Kim, Tae Kwon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.247-255
    • /
    • 2014
  • The present study was conducted to elucidate the characteristics of temperature at the inlet and outlet pipes of a refrigerator drain condenser and suggest the method to predict the temperature of the refrigerant at the inlet and outlet pipes of the drain condenser. For this purpose, a built in style refrigerator was installed in a constant temperature chamber to measure temperatures at the inlet and outlet pipes of the drain condenser. From the results of the present analysis, it could be seen that the measured temperatures changed from $37^{\circ}C$ to $46^{\circ}C$ and the actual refrigerant temperatures were higher than the measured temperatures with the difference magnitude of $8^{\circ}C$ to $22^{\circ}C$. The present study suggested that the temperatures of the refrigerator could be calculated with the measured temperatures by introducing curve fitting of the measured temperature. The predicted refrigerant temperatures by the present study had the accuracy within 6% error of the actual refrigerant temperatures.

Condensation Heat Transfer Characteristics of Hydrocarbon Refrigerants in Horizontal Tubes of 7.73 mm and 5.80 mm (7.73 mm와 5.80 mm 수평관내 탄화수소 냉매의 응축 열전달 특성)

  • Son, Chang-Hyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.331-339
    • /
    • 2008
  • 본 논문은 내경 7.73 mm와 5.80mm의 수평관내 프레온계 냉매 R-22와 탄화수소계 냉매 R-290과 600a의 응축 열전달 계수의 실험적 결과를 나타내었다. 실험장치는 압축기, 응축기, 팽창밸브, 증발기 등으로 구성된다. 응축 실험은 질량유속 $35.5{\sim}210.4\;kg/m^2s$이고, 응축온도 40$^{\circ}C$인 조건에서 수행하였다. 주요 결과를 요약하면 다음과 같다. 탄화수소계 냉매 R-290과 R-600a의 평균 열전달 계수는 프레온계 냉매 R-22보다 높게 나타났으며, R-600a의 평균 열전달 계수가 모든 관경에 대해 가장 높게 나타났다. 실험결과와 종래의 상관식을 비교한 결과, 모든 관경과 냉매에 대해 Haraguchi 등의 상관식이 가장 좋은 일치를 보였다. 그 중에서 Cavallini-Zecchin의 상관식은 7.73 mm 관경의 실험데이터와, Dobson 등의 상관식은 내경 5.80 mm 관경의 데이터와 좋은 일치를 보였다.

Study of Ethane Performance at Two-Stage Cascade Vapor Compression System (에탄을 사용한 2원 냉동 시스템의 성능 평가)

  • Rahadiyan, Lubi;Kim, Y.G.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.75-82
    • /
    • 2006
  • 세계적인 환경 보호 정책에 따라 할로겐화탄소 냉매를 대체할 환경 친화적인 초저온 냉매의 개발과 연구가 활발히 진행되고 있다. 일반적으로 캐스캐이드 2원 냉동 시스템에서 아직까지 할로겐화탄소 냉매가 널리 사용되고 있다. 탄화수소 화합물의 한 종류인 에탄은 낮은 지구 온난화 지수와 낮은 오존층 파괴지수를 가진 친 환경적인 자연 냉매이다. 본 연구는 지구 온난화 지수가 높은 R-23 냉매와 비교하여 캐스캐이드 2원 냉동 시스템에서 에탄의 성능 시험을 목적으로 수행 하였다. 1원측에는 R-22를 사용하였으며, 증발 온도에 따른 성능은 R-23 보다 에탄(R-170)이 더 높게 나타났다.

  • PDF

A Simulation Study on the Cascade Refrigeration Cycle for the Liquefaction of the Natural Gas [2]: An Application to the Multistage Cascade Refrigeration Cycle (천연가스 액화를 위한 캐스케이드 냉동사이클의 전산모사에 대한 연구 [2]: 다단 캐스케이드 냉동 사이클에 적용)

  • Cho, Jung-Ho;Kim, Yu-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1013-1019
    • /
    • 2011
  • In this paper, simulation works for a multi-stage cascade refrigeration cycle using propane, ethylene and methane as refrigerants have been performed for the liquefaction of natural gas using Peng-Robinson equation of state built-in PRO/II with PROVISION release 8.3. The natural gas feed compositions were supplied from Korea Gas Corporation and the flow rate was assumed to be 5.0 million tons per annual. Supply temperature for propane refrigerant was fixed as $-40^{\circ}C$, that for ethylene refrigerant as $-95^{\circ}C$, and that for methane refrigerant as $-155^{\circ}C$. For the multi-stage refrigeration cycle, three-stage refrigeration was assumed for propane refrigeration cycle, two-stage refrigeration for ethylene refrigeration cycle and three-stage refrigeration for methane refrigeration cycle. Natural gas was finally cooled and liquefied to $-162^{\circ}C$ by Joule-Thomson expansion. Conclusively, 91.71% by mole of the natural gas liquefaction ratio was obtained through a cascade refrigeration cycle and Joule-Thomson expansion and 0.433 kW of compression power was consumed for the liquefaction of 1.0 kg/hr of natural gas.

Analysis of Heat Transfer Performance of a Gas Cooler of CO2 Heat Pump for Water Heating (온수제조용 CO2 히트펌프의 가스쿨러 열전달 성능 해석)

  • Kwon, Jeong-Tae;Lee, Chang-Kyung;Baek, Dong-Seok;Kwon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5317-5322
    • /
    • 2013
  • This study presents a prediction method for heat transfer performance of a gas cooler of $CO_2$ heat pump using ${\epsilon}$-NTU method, and compared the results with the experimental data from the open literature. The heat transfer rate, refrigerant side outlet temperature and water side outlet temperature were calculated by using EES(Engineering Equation Solver)program in multi-tube-in-tube type $CO_2$ heat pump gas cooler. Analysis was performed in two methods : The first method performed without dividing into the test section by applying an analysis of the mean properties(mean analysis). The second method, tube length divided into 50 sections, was applied to the local properties(local analysis). From the present study, a good agreement at the local analysis was obtained between the analytical and experimental results by 0.3~1.1%, 1.31~1.88% and 3.12~5.18% for heat transfer rate, water and refrigerant side outlet temperatures, respectively.