DOI QR코드

DOI QR Code

Performance analysis of 20 kW OTEC power cycle using various working fluids

다양한 작동유체를 이용한 20 kW급 해양온도차 발전 사이클 성능 분석

  • Yoon, Jung In (Department of refri & air-conditioning Engineering, Bukyung national University) ;
  • Ye, Byung Hyo (Department of refri & air-conditioning Engineering, Bukyung national University) ;
  • Heo, Jung Ho (Department of refri & air-conditioning Engineering, Bukyung national University) ;
  • Kim, Hyun Ju (Korea Institute of Ocean Science & Technology) ;
  • Lee, Ho Saeng (Korea Institute of Ocean Science & Technology) ;
  • Son, Chang Hyo (Department of refri & air-conditioning Eng., Bukyung national University)
  • Received : 2013.08.19
  • Accepted : 2013.11.07
  • Published : 2013.11.30

Abstract

In this paper, the 20 kW Ocean Thermal Energy Conversion(OTEC) is newly proposed in order to select the refrigerant that makes the cycle performance be optimized and the performance of 20 kW OTEC applying 15 pure refrigerants and 16 mixed refrigerants is analyzed. The efficiency of system, the mass flow of working fluids and TPP, which is new concepts, are analyzed. In view of cycle efficiency, R32/R152a (87:13) is the highest efficiency among the refrigerants. At the mass flow of working fluid to make the 20 kW electricity, R717 is shown as the lowest value. And in view of TPP in this study, R32/R134a 70:30 is the most optimized refrigerant. The analysis can confirm that the refrigerant is different along with the part of the system, so it is necessary to select the optimized refrigerant for 20 kW OTEC.

본 연구에서는 고효율 20 kW급 해양온도차 발전사이클을 새롭게 제안하고, 발전사이클의 성능이 최대가 되는 작동유체를 선정하기 위해서 단일냉매 15종과 혼합냉매 16종을 적용하여 발전사이클의 성능을 비교 분석하였다. 시스템 효율, 필요 냉매순환량, 그리고 TPP와 같은 인자를 사용하여 발전사이클의 특성을 분석하였다. 우선, 발전사이클의 효율 측면에서는 R32/R152a(87:13)이 가장 높으며, 필요 냉매 순환량은 R717이 가장 낮다. 그리고 논문에서 새롭게 제시한 TPP의 분석 결과에서는 R32/R134a 70:30이 가장 적합한 냉매로 나타났다. 이상의 결과로부터, 각각의 분석인자에 적합한 냉매는 그 목적에 따라서 다르다는 것을 확인할 수 있었다. 따라서 이러한 분석인자에 맞는 냉매의 선정이 필요하다.

Keywords

References

  1. J. I. Yoon, S. M. Baek, and C. H. Son, "Power system for ocean thermal energy conversion," The Korean Society of Marine Engineering, vol. 36, no. 2, pp. 217-223, 2012 (in Korean).
  2. J. I. Yoon, S. M. Baek, C. H. Son, J. H Heo, B. H. Ye, H. S. Lee, and H. Ju. Kim, "Efficiency characteristics of OTEC power cycle applying to single and multi component refrigerants", The Korean Society of Marine Engineering Spring Conference, pp. 259-260, 2012 (in Korean).
  3. J. I. Yoon, C. H. Son, S. M. Baek, H. J. Kim, and H. S. Lee "Performance comparision of subcritical OTEC power cycle using various working fluids", International symposium on Innovative Materials for Processes in Energy Systems, pp. 565-570, 2013.
  4. T. C. Hung, S. K. Wang, C. H. Kuo, B. S. Pei, K. F. Tsai, "A study of organic working fluids on system efficiency of an ORC using low-grade," Energy, vol. 35, pp. 1403-1411, 2010. https://doi.org/10.1016/j.energy.2009.11.025
  5. I. Athanasios, B. Papadopoulosa, Mirko stijepovicc, and Patrick Linkec, "On the systematic design and selection of optimal working fluids for organic rankine cycles", Applied Thermal Engineering, vol. 30, no. 6-7, pp. 760-769, 2010. https://doi.org/10.1016/j.applthermaleng.2009.12.006
  6. H. Chen, D. Y. Goswami, and E. K. Stefanakos, "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, vol. 14, pp. 3059-3067, 2010. https://doi.org/10.1016/j.rser.2010.07.006
  7. Bahaa Saleh, Gerald Koglbauer, Martin Wendland, Johann Fischer, "Working fluids for low-temperature organic Rankine cycles," Energy, vol. 32, no. 7, pp. 1210-1221, 2007. https://doi.org/10.1016/j.energy.2006.07.001
  8. H. S. Lee, H. J Kim, D. G Kang, and D. S Jung, "Thermodynamic performance of R32/R152a mixture for water source heat pumps", Elsevier, vol. 40, no. 1, pp. 100-106, 2012. https://doi.org/10.1016/j.energy.2012.02.024
  9. L. A. Vega, "Ocean thermal energy conversion primer", vol. 36, no. 4, pp. 25-35, winter, 2002. https://doi.org/10.4031/002533202787908626
  10. Aspen HYSYS. Version 8.0, Aspen Technology Inc, 2013.

Cited by

  1. The performance comparison of vapor-vapor ejector OTEC system using wet refrigerants vol.34, pp.4, 2014, https://doi.org/10.7836/kses.2014.34.4.051
  2. Design of a 100kW-class radial inflow turbine for ocean thermal energy conversion using R32 vol.38, pp.9, 2014, https://doi.org/10.5916/jkosme.2014.38.9.1101
  3. Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to the working fluid and the cycle vol.39, pp.9, 2015, https://doi.org/10.5916/jkosme.2015.39.9.881
  4. A study on the performance of various BIPV modules applied in a real building demonstration vol.36, pp.2, 2016, https://doi.org/10.7836/kses.2016.36.2.053
  5. 적외선 램프 가열방식을 이용한 태양전지 셀의 솔더링 공정 및 열처리 조건 별 특성 평가 vol.4, pp.2, 2013, https://doi.org/10.21218/cpr.2016.4.2.059
  6. Dynamic Simulation of System Performance Change by PID Automatic Control of Ocean Thermal Energy Conversion vol.8, pp.1, 2013, https://doi.org/10.3390/jmse8010059