• Title/Summary/Keyword: 냉각 방식

Search Result 395, Processing Time 0.033 seconds

Experimental Study on the Rapid Cooling System by Refrigerant Storage Method (냉매 저장방식에 의한 쾌속 냉각장치에 대한 실험적 연구)

  • 장기태;고준석;정상권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.937-942
    • /
    • 2003
  • In the present study, low-temperature low-pressure refrigerant storage method is proposed to achieve higher cooling capacity during a short period of time than that of a compressor in steady operation. Experimental apparatus was designed and set up to analyze the performance of the new-conceptual cooling system. Two reservoirs for sequential storage of refrigerant were used in the cooling system. Several on/off solenoid valves were installed for control of refrigerant flow. From the experimental results, the initial rapid cooling by low temperature low-pressure refrigerant storage method was ascertained for successful operation. This rapid cooling methodology shall be useful for other low-capacity refrigeration system.

해외 정보 - 러시아 벨로야르스크 고속로의 기술적 발전

  • 한국원자력산업회의
    • Nuclear industry
    • /
    • v.36 no.2
    • /
    • pp.65-67
    • /
    • 2016
  • 러시아가 차세대 원자로 기술로 건설한 나트륨 냉각 방식 BN-800 고속로의 상업적 가동이 임박함에 따라 러시아가 핵연료를 재사용하는 밀폐 사이클 문제를 해결하면서 이루어내고 있는 최근의 기술적 진보에 대해 살펴보았다.

  • PDF

Predictions of the Cooling Performance on an Air-Cooled EV Battery System According to the Air Flow Passage Shape (공기 유로 형상에 따른 공랭식 전기자동차 배터리 시스템의 냉각 성능 예측)

  • Jeong, Seok Hoon;Suh, Hyun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.801-807
    • /
    • 2016
  • This paper aims to compare and study the cooling performance of a battery system in accordance with the inlet and outlet geometry of the air passage in an EV. The arrangement and the heat source of the battery module were fixed, and the inlet/outlet area and its geometry were varied with the analysis of the cooling performance. The results of this study provide suggestions for the air flow stream line inside of a battery, the velocity field, and the temperature distributions. It was confirmed that the volume flow rate of air should be over $400m^3/h$, in order to satisfy conditions under $50^{\circ}C$, which is the limit condition for stable operation. It was also revealed that the diffuser outlet geometry can improve the cooling performance of battery system.

Development of a New Air Cooling System Utilizing the Stirling Engine for Preventing Solar Cell from Overheating (태양광 모듈의 과열 방지용 공랭형 스털링기관 냉각 시스템 개발)

  • Kim, Hyoungeun;Park, Chanwoo;Chu, Jinkyung;Keum, Dongyeop;Park, Silro;Kim, Jeongmin;Kim, Daejin
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • In this paper new air-cooling system utilizing Stirling engine was proposed for improving efficiency in solar photovoltaic power generation. The solar cell plate was equipped with semi-circular channel for air flow on the backside. Beta-type Stirling engine was installed on the plate and its flywheel was connected to a motor fan by a transmission belt. A forced convective air flow for heat radiation was generated by the operation of the self-starting Stirling engine. The performance tests for power generation of solar cell with or without the proposed air-cooling system were conducted under halogen lamp. From the experimental results, it was found that decline in output voltage of the solar cell with proposed cooling system was 25% less than that of the solar cell without cooling system.

Numerical Study of the Effect of Fan Arrangement on the Cooling Performance of the ONAF Type Radiator for Power Transformer (변압기용 ONAF 방식 방열기의 팬 배치에 따른 냉각특성 연구)

  • Kim, Kuk-Kyeom;Suh, Yong Kweon;Kang, Sangmo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.449-455
    • /
    • 2015
  • Owing to the trend of an increase in capacity and high-efficiency requirement, the life and reliability of power transformer depend significantly on the amount of heat generation per unit volume and the degradation of insulation oil. These problems can be solved by enhancing the cooling performance of the radiator. The purpose of this study was to find a suitable position of fans for a better cooling effect given by the forced-convection of air in an ONAF (Oil Natural Air Forced) type transformer. In the simulation, commercial software was used for flow analysis, and the cooling passage of the oil was simplified to shorten the time taken for computation. With the diameter of the fan fixed at a constant value, the analysis was performed only by changing the position of the fans. As a result, a vertical position change of the fans does not affect the cooling performance significantly. However, the temperature drop given by the fans positioned on the front region of the transformer is larger than that on the rear region.

Thermoelement cooling special Quality analysis for DMFC high effectiveness electric power occurrence (DMFC 고효율 전력발생을 위한 열전소자 냉각 특성분석)

  • Cheang, Eul-Hean;Lim, Joung-Min;Moon, Chae-Joo;Jung, Kyung-O;Kim, Gi-Un
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.389-392
    • /
    • 2007
  • 본 연구는 지벡(Seebeck)효과를 이용한 열전발전소자의 효율증가를 위한 Cooling System에 대한 연구이다. 열전발전소자는 Hot side와 Cool side의 온도차에 의해 전력발생 효율이 결정되며 열전발전소자가 견딜 수 있는 Hot Side의 온도는 고정돼있는 반면, Cool Side의 온도는 Cooling System의 설계에 따라 온도 설정이 가능하다. 본 연구는 Cooling System은 방열판과 팬으로 구성된 공랭방식을 사용하였고, 냉각효율을 높이기 위해 방열판의 크기 및 모양 팬의 크기와 속도 공기의 이동방향에 따른 냉각특성을 실험하였고 그에 따른 특성들을 논하고자 한다.

  • PDF

A Simulation Method for Predicting the Performance and the NOx Level of Gas Turbine System (가스터빈 시스템의 성능 및 NOx 배출 예측을 위한 모사방법)

  • Lee, Han-Goo;Kang, Seung-Jong;Lee, Chan
    • Journal of Energy Engineering
    • /
    • v.3 no.1
    • /
    • pp.28-35
    • /
    • 1994
  • 가스터빈 사이클의 성능 및 NOx 배출물 생성량 예측을 위한 모사 프로그램을 개발하였다. 압축기 및 터빈은 등엔트로피 과정으로, 연소기는 Thermal NOx 생성을 수반하는 연소모형으로서 가정하였다. 또한 터빈 냉각을 위한 추출공기량과 냉각방식이 성능에 미치는 적절한 상관 관계식을 도입하여 평가하였다. 본 성능평가 모델을 이용하여 예측된 결과와 실험결과간의 비교를 통하여 모델의 타당성을 검증하였고, 증기 분사량, 터빈 냉각변수 및 압축비 변화에 따른 예측결과를 통하여 가스터빈 시스템 최적 운전 및 설계기준을 제시하였다.

  • PDF

The Design of a Read-Out Circuit for Uncooled Infrared Sensor by Using Differential Input Stage (차동 입력단 구조를 이용한 비냉각형 적외선 센서용 신호 검출회로의 설계)

  • Hong, Seung-Woo;Hwang, Sang-Joon;Park, Sang-Won;Jung, Eun-Sik;Kang, Ey-Goo;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.180-182
    • /
    • 2005
  • 비냉각형 적외선 검출 회로 설계 시 공정상 변화에 의해 발생하는 센서의 저항값 변동이 크다. 본 논문에서는 이것을 해결하기 위해 차동적 입력 수신 구조를 이용한 방법을 제시하였다. 볼로미터 타입 비냉각형 적외선 영상 센서 회로는 입사된 적외선 에너지 양에 따라 센서의 저항값이 변하는 특성을 이용하며 그에 따른 전압 또는 전류의 변화를 측정하여 적외선의 파장을 알아내는 방식으로 검출회로 설계 시 가장 큰 문제점인 공정상의 변화 등으로 인한 신호검출 회로의 오동작을 개선하기 위하여 검출회로의 입력단을 차동적으로 받아들이도록 설계하였다.

  • PDF

Preliminary Experimental Study for Water Recovery and Particulate Matter Reduction through a Hybrid System that Combines Exhaust Cooling and Absorption from Ships (선박배출 배기냉각과 흡수식이 결합된 하이브리드 시스템을 통한 물 회수 및 미세먼지 저감을 위한 기초실험연구)

  • Youngmin Kim;Donggil Shin;Younghyun Ryu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1252-1258
    • /
    • 2022
  • The exhaust gas from the marine engines include a quantity of water vapor and particulate matter. The total particulate matter includes filterable particulate matter (FPM) and condensable particulate matter (CPM) that condense after releasing into the atmosphere. The portion of CPM is higher than that of FPM that is removable through the filter before discharging. An experimental setup for waste heat and water recovery and removal of CPM in the exhaust gas was tested using an industrial gas boiler in the laboratory. The water and CPM in the exhaust gas were removed through the first stage of cooling method and further removed through the second stage of absorption method. The efficiencies of water recovery were 73% after the first stage of cooling method and 90% after the second stage of absorption method. At the same time, the CPM was removed by 80-90% through the processes. The waste heat recovered could be used to process heat, and the water recovered could be used to process water in the ship. Furthermore, the CPM, which is a major source of the particulate matter but not subject to administrative regulation, could be removed effectively.