• Title/Summary/Keyword: 냉각수 누설

Search Result 8, Processing Time 0.028 seconds

Characteristics of Water Leakage from Cooling Components in a Storage Ring (방사광 차단용 진공부품의 냉각수 누설 특성)

  • Park, C.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • We analyzed the characteristics of water leakage from cooling components of the storage ring in the Pohang Light Source. The water leaks led localized pressure bumps and abnormal pressure changes. The leakage also changed the residual gas compositions depending not only on the position between leakage place to gas analyzer but also on on/off switching of ion pump and electron beam. We found that the residual gas analysis of $CH_4$, CO, NO was useful in determining water leaks.

담수중에서 탄소강재의 전기화학적 부식방지에 관한 연구

  • 임우조;윤병두;김성훈;구자점;김인수
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.61-62
    • /
    • 2000
  • 담수(청수)를 용수 및 냉각수로 사용하는 보일러, 내연기관, 열교환기 및 배관 등은 부식에 의한 손상이 더 빨리 발생하여 누설사고가 심각한 문제점으로 부상하고 있다. 최근, 전반적인 산업발전 및 소득증가에 따라 공업단지, 일반 가정의 폐수 및 농약 등에 의해 하천이나 강의 환경오염화로 산성화되고 있다. 그러나 담수중에는 용존산소 및 산성물질 등이 존재하지 않는다고 가정하면, 철강재의 마그네타이트(magnetite)보호 피막은 안정됨으로써 철강재의 부식은 방지될 것이다.(중략)

  • PDF

Experimental Study on Prediction and Diagnosis of Leakage and Water Absorption in Water-Cooled Generator Stator Windings by Drying Process Analysis (수냉각 발전기 고정자 권선의 건조 과정 분석을 통한 누설 및 흡습 예측 진단에 관한 실험적 연구)

  • Kim, Hee-Soo;Bae, Yong-Chae;Lee, Wook-Ryun;Lee, Doo-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.867-873
    • /
    • 2010
  • The failure of water-cooled generator stator windings as a result of insulation breakdown due to coolant water leaks and water absorption often occurs worldwide. Such failure can cause severe grid-related accidents as well as huge economic losses. More than 50% of domestic generators have been operated for over 15 years, and therefore, they exhibit signs of aging. Leaking and water-absorbing windings are often found during an overhaul. In an existing method for evaluating the integrity of generator stator windings, the drying process of the interior of the windings is ignored and only final leak tests are performed. In this study, it is shown that water leaks and water absorption in stator windings can be detected indirectly through vacuum pattern analysis in the vacuum drying mode, which is the used in the preparation stage of the leak test.

An Experimental Study of a Diffuser Test Rig for Simulating High-Altitude Environment by using Hot (고온 연소가스를 이용한 고공 환경 모사용 디퓨저 실험장치 연구)

  • Yang, Jae-Jun;Lee, Yang-Suk;Kim, Yoo;Ko, Young-Sung;Kim, Yong-Wook;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.31-34
    • /
    • 2007
  • Performance tests of supersonic exhaust diffuser were conducted by using hot combustion gas for simulating high-altitude environment. The test rig consists of a combustion chamber, a vacuum chamber, water cooling ring and diffuser. Before combustion experiments, the preliminary leak tests were carried out on the liquid rocket engine and diffuser by using high pressure nitrogen(30barg) and a vacuum pump. The leak test results showed that there was no leaks at high pressure and vacuum pressure conditions.

  • PDF

Effect of Coolant on PEMFC Performance in Low Humidification Condition (저가습 조건에서 냉각 유체의 고분자전해질 연료전지에 대한 영향)

  • Lee, Hung-Joo;Song, Hyun-Do;Kwon, Jun-Taek;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • Proton exchange membrane fuel cell(PEMFC) performance could be affected by various factors such as cell temperature, total pressure, partial pressure of reactants and relative humidity. Hydrogen ion is combined with water to form hydronium ion [$H_3O^+$] and pass through membrane resulting electricity generation. Cooling system is needed to remove heat and other uses on large scale fuel cell. In case that collant conductivity is increased, fuel cell performance could be decreased because produced electricity could be leaked through coolant. In this study, triple distilled water(TDW) and antifreeze solution containing ethylene glycol was used to observe resistance change. Resistance of TDW was taken 28 days to reach preset value, and effect on fuel cell operation was not observed. Resistance of antifreeze solution was not reached to preset value up to 48 days, but performance failure occurred presumably caused by bipolar plate junction resulting stoppage resistance experiment. Generally PEMFC humidification is performed near-saturated operating conditions at various temperatures and pressures, but non-humidifying condition could be applied in small scale fuel cell to improve efficiency and reduce system cost. However, it was difficult to operate large scale fuel cell without humidifying, especially higher than $50{\sim}60^{\circ}C$. In case of small flux such as 0.78 L/min, temperature difference between inlet and outlet was occurred larger than other cases resulting performance decrease. Non-humidifying performance experiments were done at various cell temperature. When both of anode and cathode humidification were removed, cell performance was strongly depended on cell operating temperature.

Coolant Leak Effect on Polymer Electrolyte Membrane Fuel Cell (고분자전해질연료전지의 냉각수 누설에 대한 연구)

  • Song, Hyun-Do;Kang, Jung-Tak;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.301-305
    • /
    • 2007
  • The performance of polymer electrolyte membrane fuel cell could be decreased due to coolant leaked from connection part. Micro pump was used to put small amount of coolant and investigate the effect on fuel cell. The stoichiometric ratio of hydrogen/air was 1.5/2.0, both side of gas was fully humidified, and current density of $400mA/cm^2$ was used as standard condition in this experiment. Constant current method was used to check performance recovery from coolant effect in 3 cell stack. The performance was recovered when coolant was injected in cathode side. On the other hand, the performance was not recovered when coolant was injected in anode side. Ethylene glycol could be converted to CO in oxidation process and cause poisoning effect on platinum catalyst or be adhered on GDL and cause gas diffusion block effect resulting performance decrease. Water with nitrogen gas was supplied in anode side to check performance recovery. Polarization curve, cyclic voltammetry, electrochemical impedance spectroscopy was used to check performance, and gas chromatography was used to check coolant concentration. Constant current method was not enough in full recovery of performance. However, water injection method was proved good method in full recovery of performance.

Effects of Expanding Methods on Residual Stress of Expansion Transition Area in Steam Generator Tube of Nuclear Power Plants (원전 증기발생기 전열관 확관법이 확관부위 잔류응력에 미치는 영향)

  • Kim, Young Kyu;Song, Myung Ho
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.362-372
    • /
    • 2012
  • The steam generator tubes of nuclear power plants are pressure boundaries, and if tubes are leaked, the coolant with the radioactive materials was flowed out from the primary system to the secondary system and polluted the plant and the air. Recently most crack defects of tubes are stress corrosion cracks and these defects are located in expansion transition area, sludge pile-up region, and U-bend area. The most effective one of crack initiation factors in expansion transition area and U-bend area is the residual stress. According to the experiences of Korea standard nuclear plants(Optimized Power Reactor-1000), they had the stress corrosion cracks at the tube expansion transition area in early operating stage and especially lots of circumferential cracks were occurred. Therefore in this study, the distributions and conditions of residual stresses by tube expansion methods were compared and the dominant reason of a specific direction was examined.

Effect of Normal Operating Condition Analysis Method for Weld Residual Stress of CRDM Nozzle in Reactor Pressure Vessel (원전 정상가동조건 적용 방식이 원자로 압력용기 상부헤드 관통 노즐의 용접 잔류응력에 미치는 영향)

  • Nam, Hyun Suk;Bae, Hong Yeol;Oh, Chang Young;Kim, Ji Soo;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1159-1168
    • /
    • 2013
  • In pressurized water nuclear reactors (PWRs), the reactor pressure vessel (RPV) upper head contains penetration nozzles that use a control rod drive mechanism (CRDM). The penetration nozzle uses J-groove weld geometry. Recently, the occurrence of cracking in alloy 600 CRDM penetration nozzle has increased. This is attributable to primary water stress corrosion cracking (PWSCC). PWSCC is known to be susceptible to the welding residual stress and operational stress. Generally, the tensile residual stress is the main factor contributing to crack growth. Therefore, this study investigates the effect on weld residual stress through different analysis methods for normal operating conditions using finite element analysis. In addition, this study also considers the effect of repeated normal operating condition cycles on the weld residual stress. Based on the analysis result, this paper presents a normal operating condition analysis method.