• Title/Summary/Keyword: 냉각(cooling)

Search Result 3,156, Processing Time 0.027 seconds

Effect of supercooling on the cooling in horizontal cylindrical annuli (이중원관의 냉각과정에 미치는 과냉각의 영향)

  • Yun, Jeong-In;Kim, Jae-Dol;Kato, Toyofumi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3313-3321
    • /
    • 1996
  • A fundamental study in cooling and solidification process focused on ice storage was performed, including the interesting phenomena of density inversion, supercooling and dendritic ice. A numerical study was performed for natural convection and ice formation in the cooling and freezing processes with supercooling in a space between double cylinders. When water was cooled under the freezing point by a cooling wall in a cavity, solidification was not started at once, but a subcooled region was formed near the wall. Especially, when the cooling rate was low, subcooled region extended to a wide area. However, after a few minutes, supercooling is released by some triggers. Dendritic ice is suddenly formed within a subcooled region, and a dense ice layer begins to be developed from the cooling wall. Due to the difficulties, most previous studies on solidification process with numerical methods had not treated the supercooling phenomena, i.e. the case considering only the growth of dense ice. In this study, natural convection and ice formation considering existence of supercooling and dendritic ice were analyzed numerically with using finite difference method and boundary fixing method. The results of numerical analysis were well compared with the experimental results.

Film Cooling from Two Rows of Holes with Opposite Orientation Angles: Blowing Ratio Effects (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성 : 분사비의 영향)

  • Ahn, J.;Jung, I.S.;Lee, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.113-118
    • /
    • 2000
  • Experimental results describing the effects of blowing ratio on film cooling from two rows of holes with opposite orientation angles are presented. The inclination angle was fixed at $35^{\circ}$ and the orientation angles were set to be $45^{\circ}$ for downstream row. and $-45^{\circ}$ for upsream row. The studied blowing ratios were 0.5, 1.0 and 2.0. The boundary layer temperature distributions were measured using thermocouple at two downstream loundary layer temperature distributions were measured using thermocouple at two downstream locations. Detailed adiabatic film cooling effectiveness and heat transfer coefficient distributions were measured with TLC(Thermochromic Liquid Crystal). The adiabatic film cooling effectiveness and heat transfer coefficient distributions are discussed in connection with the injectant behaviors inferred from the boundary layer temperature distributions. Film cooling performance, represented by heat flux was calculated with the adiabatic film cooling effectiveness and heat transfer coefficient data.

  • PDF

Film Cooling Characteristics with Straight-Slot Coolant Injection by Numerical Study (직선슬롯 분사유동에 의한 막냉각의 열유동 특성에 대한 수치적 연구)

  • Rho, Suk-Man;Son, Chang-Ho;Lee, Geun-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.359-366
    • /
    • 2000
  • A numerical study has been performed for the 2-dimensional film cooling employed in the cooling of hot components such as gas turbines. The flow and heat transfer characteristics are numerically simulated using FLUENT software. Blowing ratios vary from 0.25 to 5.0 and coolant injection angles vary from $15^{\circ}\;to\;60^{\circ}\;in\;15^{\circ}$ increment. The result shows that, for all cases, there exists a blowing ratio which maximizes film cooling effect (measured by the distance from the slot exit to the downstream wall location at which temperature increases to 900 K) for a given injection angle. It is also observed that the film cooling effectiveness decreases when downstream wall is sunk or lifted. The simulation has been performed using both constant properties and temperature dependent variable properties. It is found that the cases with constant properties overestimate the film cooling effect considerably.

  • PDF

Comparison of the Characteristics of Spray Cooling between Water and Nanofluid Sprays (물과 알루미나 나노유체 분무의 분무냉각특성 비교)

  • Kang, B.S.;Lee, S.P.
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.88-93
    • /
    • 2014
  • Nanofluids is that metallic or nonmetallic nanometer-sized particles are dispersed in liquid and they can be used in various fields to increase the heat transfer rate. This study conducted experiments to evaluate whether the cooling efficiency of nanofluids is better than that of water in spray cooling. A heated surface was designed and fabricated to make the temperature distribution be linear, which was confirmed by three thermocouple measurements under the heated surface. Spray cooling experiments were conducted using water, 0.2% wt. (weight), and 0.5% wt. $Al_2O_3$ nanofluids at the pressure of 0.2 MPa and 0.3 MPa. Based on the results, it is shown that the cooling efficiency of nanofluids is higher than that of water especially in the region of single phase heat transfer. As a result, we can expect that nanofluids can be used as efficient coolants in the cooling of electronic packages where the temperature of the heated surface is not high enough for boiling incipience.

Effect of Die Cooling Time on Component Mechanical Properties in a Front Pillar Hot Stamping Process (곡선형 냉각채널 금형을 사용한 프론트 필라 핫스탬핑 공정에서 금형냉각시간이 기계적 특성에 미치는 영향)

  • Lee, Jaejin;Kang, Dakyung;Suh, Changhee;Lim, Yonghee;Lee, Kyunghoon;Han, Soosik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.33-38
    • /
    • 2019
  • Researchers have recently begun to study hot stamping processes to shorten the mold cooling time and improve productivity. These publications explain that the mold cooling time can be reduced by using a curved cooling channel, where the mold surface is processed to a uniform depth, instead of a straight cooling channel that uses the conventional gun drilling machine. This study investigates the characteristics of the front pillar of an automobile after using a mold with a curved cooling channel. To analyze the change in properties, we used a 1.6 mm boron steel blank and heated the prototype at $930^{\circ}C$ for 5 minutes. Next, we formed the prototype with a load of about 500 tons while varying the mold cooling time between 1 and 10 seconds. We subjected each prototype specimen to a tensile strength test, a hardness test, and a tissue surface observation.

Experimental Investigation on Forced Convective Heat Transfer Characteristic Generated to Heated Tube (가열된 튜브에서 발생하는 강제 대류열전달 특성에 관한 실험적 연구)

  • Park, Hee-Ho;Lee, Yang-Suk;Kim, Sun-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.90-98
    • /
    • 2006
  • The Heated Tube Facility(HIF) was fabricated to identify the forced convective heat transfer and the cooling characteristic for the hydrocarbon fuel(Jet A-1), which is used for the coolant of the regenerative cooling system. The forced convective heat transfer coefficient was calculated from the measured coolant and tube surface temperature. In case of using the Jet A-1, the maximum heat flux which the coolant can absorb was identified by determining the critical wall temperature generating the burnout on the fixed flow condition. The inlet bulk-temperature of the coolant has a direct influence on the forced convective heat transfer characteristic.

A Consideration on the Application of Thermoelectric Cooler to Obesity Therapy (열전 냉각장치의 비만치료 적용 방법론 고찰)

  • Ko, Yun-Seok;Lee, Woo-Cheol;Kim, In-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1437-1442
    • /
    • 2012
  • The contemporary peoples focus on treatment of obesity in order to prevent the adult disease and to manage the beauty. Although surgical treatment of obesity shows the reliable cure effect, it could cause side effects and has a disadvantage that postoperative recovery period is long. Accordingly, this paper compares and analyzes the non-operative treatments which can be of help to treat obesity. Also, it considers the obesity therapy based on the Peltier cooling system. And finally a basic control circuit based on Peltier module is designed for Peltier cooling-based obesity therapy system.

A Study on Cooling Performance and Exergy Analysis of Desiccant Cooling System in Various Regeneration Temperature and Outdoor Air Conditions (재생온도와 외기조건 변화에 따른 제습 냉방시스템의 냉방 성능 및 엑서지 해석에 관한 연구)

  • Lee, Jang Il;Hong, Seok Min;Byun, Jae Ki;Choi, Young Don;Lee, Dae Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.413-421
    • /
    • 2014
  • Desiccant cooling system is an air conditioning system that uses evaporative cooler to cool air and it can perform cooling by using heat energy only without electrically charged cooler. Thus, it can solve many problems of present cooling system including the destruction of ozone layer due to the use of CFC[chloro fluoro carbon] affiliated refrigerants and increase of peak power during summer season. In this study, cooling performance and exergy analysis was conducted in order to increase efficiency of desiccant cooling system. Especially, using exergy analysis based on the second law of thermodynamics can resolve the issue related to system efficiency in a more fundamental way by analyzing the cause of exergy destruction both in whole system and each component. The purpose of this study is to evaluate COP[coefficient of performance], cooling capacity and exergy performance of desiccant cooling system incorporating a regenerative evaporative cooler in various regeneration temperature and outdoor air conditions.

이중냉각자켓의 냉각유량에 따른 모터내장형 고속주축계의 열특성

  • 최대봉;황주호;임경진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.239-243
    • /
    • 1997
  • The heat generation is the most important problem in the motor integrated spindle. Double cooling jacket in necessary to reduce the thermal displacement and to get the stable temperature disribution for the housing. In this study, the effects of temperature distribution and thermal displacement for the spindle system according to the variation of cooling oil flow rate are investigated experimentally on the motor-integrated spindle with double cooling jacket system. The experimental spindel system is composed with the angular contact steel ball bearings, oil-air lubrication, air or oil jacket cooling system.

Noise Evaluation and Measures of Cooling Tower at Apartment (아파트 냉각탑의 소음 평가 및 대책)

  • Lee, Kyu-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1020-1023
    • /
    • 2004
  • Recently, Cooling tower are used the necessary element in a residential area and living space on the viewpoint of indoor temperature control. The purpose of this study is to assistance the comfortable environment and economical measures of noise transmission mechanism on tile cooling tower. The results show that noise evaluation interact the main factor of distance reduction and diffraction reduction. Noise criterion apply to the NC level and equivalent transmission loss about already the design of noise reduction.

  • PDF