• Title/Summary/Keyword: 내화 마감재

Search Result 18, Processing Time 0.028 seconds

A Study on the Properties of Fire Endurance and Spalling of High Performance RC Column with the Finishing and Covering Material (고성능 RC 기둥의 마감재 변화에 따른 폭열 및 내화특성에 관한 연구)

  • Han, Cheon-Goo;Hwang, Yin-Seong;Ji, Suk-Won;Kim, Kyoung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.143-152
    • /
    • 2006
  • High performance concrete(HPC) has been widely used in high-rise building. The HPC has several benefits including high strength, high fluidity and high durability. However, spalling is susceptible to occur in HPC and HPC also tends to be deteriorated in the side of fire resistance performance at fire. This paper investigated the spalling prevention of high performance RC column. Control concrete showed severe failure and a case of concrete with fire enduring spraying material exhibited more severe spalling failure than even control concrete. In addition, concrete with fire enduring paint reported the most favorable spalling resistance effect for preventing spall, compared with other concrete covered with finishing materials, such as fire enduring spraying material, gypsum board, marble board and fire enduring PC board. Meanwhile, concrete adding 0.1% of PP fiber demonstrated spalling resistance performance after 3hours load bearing test.

Fire Resistance of High-Strength Concrete Corresponding to the Finishing Material Kinds and Thickness (마감재 종류 및 두께 변화에 따른 고강도 콘크리드의 내화특성)

  • Jung, Hong-Keun;Pei, Chang-Chun;Lee, Seong-Yeun;Han, Chang-Peng;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.473-474
    • /
    • 2009
  • In this study, a column member of an existing architecture finished with gypsum board was assumed to examine fire resistance characteristics according to the type and thickness of finishing material. All specimens showed spalling to the reinforcing part after fire resistance test. For temperature characteristics, rapid temperature increase of 100${\sim}$200 $^{\circ}C$ was shown between 35 ${\sim}$ 60 minutes in the sequence of 9.5 T, 9.5 T (2 pieces), 12.5 T, 15 T and fire resistant 12.5 T. The analysis suggested that finishing materials with better fire resistance are necessary.

  • PDF

Development of Light-weight Fire Protection Materials Using Fly Ash and Light-weight Aggregate (플라이애시 및 경량골재를 활용한 경량 내화성 마감재료 개발)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.95-102
    • /
    • 2012
  • The serious issue of tall building is to ensure the fire resistance of high strength concrete. Therefore, Solving methods are required to control the explosive spalling. The fire resistant finishing method is installed by applying a fire resistant material as a light-weight material to structural steel and concrete surface. This method can reduce the temperature increase of the reinforcement embedded in structural steel and concrete at high temperature due to the installation thickness control. This study is interested in identifying the effectiveness of light-weight fire protection material compounds including the inorganic admixture such as fly ash, meta-kaolin and light-weight aggregate as the fire resistant finishing materials through the analysis of fire resistance and components properties at high temperature. Also, this paper is concerned with change in microstructure and dehydration of the light-weight fire protection materials at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of SEM and XRD. The study results show that the light-weight fire resistant finishing material composed of fly ash, meta-kaolin and light-weight aggregate has the thermal stability of the slight decrease of compressive strength at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate. Developed light-weight fire protection materials showed good stability in high Temperatures. Thus, the results indicate that it is possible to fireproof panels, fire protection of materials.

  • PDF

Properties of Fire Resistant Finishing Mortar Using Fly Ash and Glass Forming Light Weight Aggregate (플라이애시와 유리 발포 경량골재를 사용한 내화 마감모르타르의 특성)

  • Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.374-381
    • /
    • 2015
  • This study is investigating the fire resistant finishing materials composed of fly ash and glass forming light weight aggregate has the high temperature thermal stability. High temperatures such as a fire, cementitious materials beget dehydration and micro crack of cement matrix. From the test result, developed fire resistant finishing materials showed good stability in high temperatures. These high temperature stability is caused by the ceramic binding and low thermal conductivity of glass forming light weight aggregate. Also, alkali activation reaction of fly ash and meta kaolin not showing the decomposition of calcium hydrates. Thus, this result indicates that it is possible to fire resistant finishing light weight mortars.

High Temperature Properties of Alumino Silicate Fire Protection Materials Using Fly ash (플라이애쉬 활용 Alumino silicate계 내화마감재의 고온특성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Park, Nam-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.689-692
    • /
    • 2008
  • HSC(High Strength Concrete) have superior properties well as improvement in durability compared with normal strength concrete. In spite of durability of HSC, explosive spalling of concrete is serious problem in structure safety. Therefore, Solving methods are required to control the explosive spalling. The properties of concrete are affected by changes of temperatures. Compressive strength and elasticity modulus were degraded depending on a rise of temperatures. Also, change in microstructure and dehydration of concrete subjected to high temperatures. This paper is concerned with change in microstructure and dehydration of the alumino silicate fire protection materials at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of SEM, TG-DSC and XRD. From the experimental test results, influence of high temperatures on microstructure of alumino-silicate fire protection material was identified, including chemical dehydration of C-S-H and CH. The chemical dehydration of CH under various temperatures from to 450 to 600$^{\circ}$C has been measured using the TG-DSC. However, developed alumino silicate fire protection materials showed good stability in high Temperatures. Thus, the results indicate that it is possible to fireproof panels, fire protection of materials.

  • PDF

Development of Vermiculite Board to Secure the Fire Resistance Performance of Light-Frame Wood Structural Wall (경골목구조 벽체의 내화성능확보를 위한 질석보드 개발)

  • Yoo, Seok Hyung;Cheong, Chang Heon
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.40-45
    • /
    • 2018
  • It is considered that vermiculite as an inorganic material is highly effective when it is used as a building finishing material because it is eco-friendly. Vermiculite has excellent properties such as fire resistance, heat insulation, sound absorption as well as prevention of condensation, deodorization and aesthetics. In this study, we developed a finishing board with vermiculite as its main material and mixed with mineral loose wool (VB-L) or mineral powder (VB-P), and conducted fireproof test and insulation test. In addition, fire resistance tests were carried out by applying the two developed vermiculite boards as finishing materials for the standard wall details of light frame wood structures (KS F 1611-1). As a result of the fire resistance test, the VB-L specimen showed better fire resistance than the VB-P specimen. Both vermiculite boards showed sufficient fire resistance performance of 2 hours for a thickness of 30 mm.

Analysis of Internal Structure in Alkali-Activated Fire Protection Materials Using Fly ash (플라이애시를 활용한 알칼리 활성화 내화성 마감재의 내부구조 분석)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.104-112
    • /
    • 2012
  • This study involves investigating the correlation between variation of internal structure and heating temperature of alkali-activated fire protection materials using fly ash. Dehydration and micro crack thermal expansion occur in cement hydrates of cementitious materials heated by fire. Internal structure difference due to both the dehydration of cement hydrates and pore solution causes and influences changes in the properties of materials. Also, this study is concerned with change in microstructure and dehydration of the alkali-activated fire protection materials at high temperatures. The testing methods of alkali-activated fire protection materials in high temperature properties are make use of TG-DSC and mercury intrusion porosimetry measurements. The study results show that the alkali-activated fire resistant finishing material composed of potassium hydroxide, sodium silicate and fly ash has the high temperature thermal stability. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction.

  • PDF

Spalling Reduction Method of High-Strength Reinforced Concrete Columns Using Insulating Mortar (단열모르타르를 이용한 고강도콘크리트 기둥의 폭렬저감 방안)

  • Yoo, Suk-Hyeong;Lim, Seo-Hyeong
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.8-13
    • /
    • 2011
  • High Strength Concrete (HSC) has a disadvantage of the brittle failure under fire due to the spalling. The studies on spalling control method of new constructed HSC buildings were performed enough, but the studies on existing buildings are insufficient. The new inorganic refractory mortar is developed in this study. The insulating capacity is enhanced by using light weight fine aggregate and polypropylene (PP) fiber. In results of material test, the thermal conductivity of light weight fine aggregate get lower than general fine aggregate. And in results of column test, the fire resisting time is delayed 20 minutes by using light weight fine aggregate, 10 minutes by increasing finishing depth from 10 mm to 20 mm and 4 minutes by using 0.6 % PP fiber.

Properties of Temperature History and Spatting Resistance of High Performance RC Column with Finishing Material (내화 마감재 종류에 따른 고성능 RC기둥의 폭열방지 및 온도이력 특성)

  • Heo Young-Sun;Kim Ki-Hoon;Lee Jin-Woo;Lee Bo-Hyeung;Lee Jae-Sam;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.37-40
    • /
    • 2005
  • High Performance Concrete(HPC) has been widely used in high-rise building. The HPC has several benefits including high strength, high fluidity and high durability. However. spatting is susceptible to occur in HPC and HPC also tends to be deteriorated in the side of fire resistance performance at fire. This paper focuses on the analysis of the temperature history and residual compressive strength with finishing material, in order to protect HPC from sudden-high-temperature, which is one of the main reason spatting occurs. Test results show that spalling occurs in all specimens. The most serious spalling took placed in HPC covering fire enduring spray-on material, whose covering thickness is 20mm but temperature history indicates that fire enduring spray effectively protected HPC from fire for more than 2hours. In addition, residual compressive strength ratio of HPC using fire enduring paint was more than $90\%$ of original strength, thus minimizing spatting and indicating significant fire resistance performance.

  • PDF

A Study on the Refractory Performance Verification of the Thermal Insulators for AES Ducts and Piping (AES 계열 덕트·배관 단열재의 내화성능 검증에 관한 연구)

  • Kwang-Ho Ham;Jea-Chun Sa;Joo-Hwan Lee;Se-Hong Min
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.419-429
    • /
    • 2024
  • Purpose: To enhance the non-combustibility of fire protection piping insulation and improve the heat resistance of smoke extraction duct insulation, I plan to verify the suitability of AES insulation materials for these applications through performance testing. Method: The non-combustibility, heat resistance, and thermal insulation performance of AES insulation materials will be verified through various tests. Result: According to the 'Standards for Flame Retardancy and Fire Spread Prevention of Building Finishing Materials,' the results of non-combustibility and gas toxicity tests confirmed the non-combustible properties. The standard fire resistance tests verified the fire resistance performance. Additionally, the thermal insulation performance was confirmed through building insulation tests. Conclusion: As the performance tests on AES inorganic insulation materials have proven their noncombustibility, fire resistance, and thermal insulation performance, these materials are considered a viable alternative for improving fire spread prevention in buildings.