• Title/Summary/Keyword: 내화구조

Search Result 482, Processing Time 0.032 seconds

A Study on the Fire Resistance Performance of RC Structure Void Slab Using The Lightweight Hollow Sphere (경량 중공체를 적용한 RC조 중공슬래브의 내화성능에 관한 연구)

  • Cho, Bum-Yean;Yeo, In-Hwan;Kim, Heung-Youl;Kim, Hyung-Jun;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.89-97
    • /
    • 2011
  • This study is for evaluating the fire resistance performance (1~2 h) of the RC Structure void slab using the Lightweight Hollow Sphere, which can reduce the unnecessary dynamic part of removing the central concrete. For this experiment, we set up depth of concrete cover, live load, and span length as the factors. The result comes out with all the slabs under those conditions can ensure the goal fire resistance performance (120 min). And among these factors, the resisting capability changes more sensitively with the live load rather than the thickness of cover. And the shorter span length could assure the better the fire resistance performance. The result observing the character in high temperature of the Lightweight Hollow Sphere which does not used as existing RC structure slab, a delay section in temperature change is occurred due to the Glass Transition in $100^{\circ}C$. And heat transfer by conduction does not occur at lightweight hollow sphere because the polystyrene in EPS (Expanded Polystyrene) melts point in $185^{\circ}C$. Therefore temperature at lightweight hollow sphere is lower than the concrete and rebar.

A Study on the Fire Resistance Capacity of Slimfloor Beam with Asymmetric H Beam (비대칭 H형강을 사용한 슬림플로어 보의 내화성능에 관한 연구)

  • Han, Sang Hoon;Choi, Seng Kwan;Kim, Hee Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • This paper is a pilot study regarding an experimental and parametric study to investigate the structural behavior of slimfloor beam(ASB) in fire. The objective of this research is to obtain the rational fire resistance design method through understanding the structural behavior of composite members in fire. The flexural capacity of slimfloor section under various thermal conditions is examined on a basis of the strength retention of the materials at elevated temperatures and full bonding assumption. The effect of web thickness and ASB depth to the moment capacity in fire is also examined.

Investigation of Corrosion Mechanism by Analyses of Spent Chromia Refractory fvom a Coal Gasifier (석탄 가스화기에서의 크로미아 내화물 분석을 통한 화학적 침식 기구 규명)

  • Kim Han Bom;Oh Myongsook
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.281-290
    • /
    • 2004
  • Spent refractories from a coal gasifier after 1000 hours of operation were analyzed for crystalline phases, chemical composition and microstructures as a function of slag penetration depth, and the slag corrosion mechanism was determined. The chemical corrosion of chromia refractory occurred via reaction between Cr$_2$O$_3$ of the refractory and FeO and A1$_2$O$_3$ in the slag. The FeO reacted with Cr$_2$O$_3$ at the slare/refractory interface and formed FeCr$_2$O$_4$. After all FeO were consumed, Al in the penetrating slag substituted Cr in Cr$_2$O$_3$, forming (Al, Cr)$_2$O$_3$, at the edges of the particle, which were broken to form fragments rich in Al. The corrosion resistance of Cr$_2$O$_3$ varied with the particle size and the extent of sintering, and the higher resistance was observed in the larger and more sintered particles. There was no chemical change in ZrO$_2$, but showed the effects of physical corrosion: the grain boundaries became more wavy, and ZrO$_2$ grains were split in the corroded area. The slag penetration depth increased in the refractory samples farther down from the feed nozzles.

Comparison of the Fire Resistance Performance of Firestop Systems on Non-Metallic Pipes, Based on the Type of Through-Penetration Sleeve Used (비금속관 설비관통부의 슬리브 종류에 따른 내화성능 비교)

  • Jeong, A-Yeong;Choi, Hong-Beom;Park, Jin-O;Lee, Hyung-Do
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.301-302
    • /
    • 2023
  • In this study, we aimed to identify changes in fire resistance according to the type of sleeves used for pipe penetrations and to examine their accreditation of fire resistance performance and use them as basic data. The test results of fire resistance according to the type of sleeve used in non-metallic pipe facilities showed that the temperature on the support side was higher for sleeves with higher thermal conductivity. For the temperature on the surface of the pipes, in the case of galvanized steel plates, steel pipes, and structures without sleeves, the highest temperature was observed after the expansion of the firestop material for 46 to 53 minutes and then decreased. PVC sleeves showed a steady increase in temperature until 53 minutes, after which the temperature did not increase further. In addition, for non-metallic pipes, the effect of the type of sleeve on fire resistance is considered to be insignificant because the lower part (heating direction of the furnace) under the support structure is cut off to block the heat during the two-hour fire resistance test.

  • PDF

Improvement of Durability in Concrete Structures Using CRM (내화학성 적층보강공법(CRM)을 활용한 콘크리트 구조물의 내구성능 향상)

  • Kim, Chun-Ho;Kim, Sang-Doh;Kim, Nam-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.145-152
    • /
    • 2013
  • As a typical construction material, concrete has been used in building all kinds of structures since the late $19^{th}$ century. Although it was recognized to secure durability as long as the regulations on design and construction have been reasonably complied, the trends of life-shortening and deterioration have frequently occurred due to all kinds of the external effects that have been experienced during the procedures of using the structures. To make matters even worse, deterioration of the concrete structures according to deterioration can not be controlled any more. Finally, the reality is that repair and maintenance are necessary in the maintenance aspect of the concrete structure. In this study, CRM(Chemical Resistance of Laminating Reinforcement Method), which had been developed to reinforce the surface of concrete and specially improve chemical resistance performance, has been applied to enhance the existing repairing and maintenance method. Therefore, the result has been drawn with comparison and analysis of the specimens applied with the general repairing and maintenance method and CRM through a variety of durability test in this study. With the result of the test, durability of the specimen applied with CRM has been more improved than the existing repairing and maintenance method, which is judged as because of the laminating effect due to reinforcement of epoxy impregnated of alkali-resistance fiber and double layered fiber reinforced seat.

Effect of fire - retardant treatment and redrying on the mechanical properties of radiata pine (내화처리(耐火處理) 및 재건조(再乾操)가 라디에타소나무의 역학적(力學的) 성질(性質)에 미치는 영향(影響))

  • Chung, Doo-Jin;Jo, Jae-Sung;Yun, Ki-Eon;Kim, Jae-Jin;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.37-49
    • /
    • 1999
  • The effect of fire-retardant treatment and redrying on the mechanical properties of radiata pine sapwood were evaluated. Small, clear specimens were treated with three different fire-retardant(FR) chemicals, borax-boric acid(BRX), minalith(MIN), and pyresote(PYR), with target retentions of 30 and 60kg/$m^3$, and then redried at maximum dry-bulb temperature of $25^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$ or $110^{\circ}C$. Each specimen, including untreated and water-treated controls, was tested in static bending and in compression parallel to grain. The extent of strength reduction was dependent on the type of FR chemicals, retention, and redrying temperature, and a highly significant interaction existed between FR treatment and redrying temperature. Modulus of rupture(MOR) and work to maximum load(WML) were significantly decreased by FR treatment and redrying. None of three FR chemicals adversely affect modulus of elasticity (MOE) and maximum crushing strength(MCS). MOE of BRX treatment and MCS of both BRX and PYR treatment increased significantly compared to untreated controls. No significant differences existed between retention levels except for MOE and MCS of some combinations of FR chemicals and redrying temperatures. Although MOE and MCS was not significantly affected by any of the redrying temperatures, these properties were generally decreased with the increase in redrying temperature. The significant reduction in MOR and WML was observed in BRX treatment when dried at temperatures of $60^{\circ}C$ and above, and in MIN and PYR treatment when dried at temperatures of $80^{\circ}C$ and above. Consequently, BRX-treated radiata pine should not be redried at temperatures >$60^{\circ}C$, and MIN- and PYR-treated radiata pine should not be redried at temperatures > $80^{\circ}C$ where bending strength and energy-related properties are important design considerations.

  • PDF

An Experimental Study on the Fire Resistance of Composite Truss Beam (합성트러스 보의 내화성능에 관한 실험적 연구)

  • Park, Won-Sup;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.135-141
    • /
    • 2009
  • The composite truss has been widely used for tall buildings and long-span structures in North America. As compared with other similar structures, it has merits such as reduction of construction period, low span/depth ratio, low dead weight and so on. It has the most effective trait for structures with long span of 12~18m. After collapse of WTC, the fire resistance behaviors of structures have been actively conducted under various fire conditions in several country. This study showed that the surface temperature of steel member in the composit truss beam was reached to $700^{\circ}C$ under the fire condition of a short time. Under the same condition, the temperature in concrete was within $200^{\circ}C$. The composit truss beam with 20mm bracing was collapsed by rapid deflection after about 3minutes. However, the beams with 25mm, 35mm, and 45mm bracing were not collapsed, even though those were reached to deflection standard of L/20 within 15minutes.

A Study on Fire Resistance Character of a Tunnel and an Underground Structure (터널 및 지하구조물의 내화특성에 관한 연구)

  • Yoo, Sang-Gun;Kim, Jung-Joo;Park, Min-Yong;Kim, Eun-Kyum;Lee, Jun-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.194-200
    • /
    • 2010
  • Recently, a longitudinal tunnel construction has increased because of subway construction extension, geomorphological effect and the development of construction Technologies etc. When the fire occurs in a tunnel and an underground structure, the many damage of human life and the economic losses are caused. In Korea, fire resistance character study of a tunnel and an underground structure is proceeding. However, when a concrete is exposed to high temperature, study of load carrying capacity reduction and stability evaluation for spalling of a concrete is not enough. Therefore in this study, fire resistance character of a concrete evaluated according to time heating temperature curve(RABT and RWS) and a result compared on virtual fire accident in order to apply fire scenario. Also this study performed thermo-mechanical coupled analysis of a FEM-based numerical technique and estimated fire-induced damage of a tunnel and an underground structure.

Fire Damaged Behavior of Real Sized Normal Strength RC Columns (화해를 입은 실물크기 보통강도 RC 기둥의 거동)

  • Lee, Cha-Don;Shin, Yeong-Soo;Hong, Sung-Gul;Lee, Kyung-Ku;Lee, Seung-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.866-876
    • /
    • 2003
  • Experiments were performed for the real sized 12 reinforced concrete columns of 350${\times}$350${\times}$3350 mm with normal concrete in order to observe the fire-damaged behavior of these columns. Columns were heated according to the ISO heating curve. Main experimental parameters were: magnitude of axial load, heating time, cover thickness, and eccentricity. Effects of these parameters on the axial expansion and contraction, rotation, buckling, ISO fire resistance, and structural stability were experimentally quantified. It has been observed that the contraction rate of axial deformation was affected mostly by the duration of heating time and buckling of reinforcement or member by the magnitude of axial load, duration of heating time, cover thickness and eccentricity in order. Based on the experimental observations, ISO fire resistance criteria were qualiatively criticized.

Redrying Fire - Retardant - Treated Structural Plywood (구조용(構造用) 내화처리(耐火處理) 합판(合板)의 재건조(再乾燥)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Schaffer, E.L.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.1-21
    • /
    • 1981
  • Exterior grades of Douglas-fir and aspen plywood were impregnated with interior fire-retardant chemicals and redried under low-, intermediate-, and high-temperature drying conditions. Fire-retardant treatments included borax-boric acid, chromated zinc chloride, minalith, pyresote, and a commercial formulation. Drying processes included kiln and press-drying. Evaluated were drying rates and defects generated. The borax-boric acid and the commercial treatments redried at rates similar to water-treated controls. Other salt treatments were significantly slower drying and more defect prone. Chromated zinc chloride treatment was consistently the slowest drying and most defect prone. Press drying was three times faster at an equivalent temperature level. However, thickness shrinkage doubled because of 50 1b/in. platen pressure.

  • PDF