• Title/Summary/Keyword: 내화구조

Search Result 482, Processing Time 0.031 seconds

Study on the state of art of fire engineering design in USA (미국의 건축물 내화설계절차에 관한 연구)

  • Park, Su-Jin;Park, Sang-Hyo;Hong, Hwa-Young;Kwon, In-Kyu
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.317-320
    • /
    • 2012
  • 급속한 산업의 발달과 기술의 향상으로 건물은 점점 고층화, 다양화되고 있지만 이러한 건물에서 화재 시 대응방안은 아직 미흡한 실정이다. 건물이 다양해짐에 따라, 그에 따른 건물의 화재거동 또한 건물 내의 가연물의 양, 종류 및 건물의 용도 등에 따라 다른 양상을 띠고 있기 때문에 화재에 영향을 미치는 여러 가지 요소들을 충분히 고려하여 건물의 내화성능을 충족하여야 한다. 따라서 본 연구는 화재로 인한 인명과 구조적 피해를 줄이고 보다 안전한 건축물을 설계하기 위하여 미국의 건축물 내화설계 절차에 관한 연구를 통하여 우리나라에 적합한 성능적 내화설계법을 도입하기 위한 기반자료를 도출한다.

  • PDF

Study on the state of art of fire design (건축물 내화설계의 국내외 현황 조사 연구)

  • Lee, Jong-Sung;Park, Su-Jin;Park, Sang-Hyo;Hong, Hwa-Young;Kwon, In-Kyu
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.389-392
    • /
    • 2011
  • 건축물에서의 화재는 인명과 재산상의 피해 및 주변 환경오염에 영향을 주는 심각한 재해를 유발한다. 따라서 세계 각국은 화재 피해를 최소화하기 위한 노력을 하고 있으며, 건축물 화재로 인한 구조물 피해를 최소화하기 위하여 내화설계법 채택 및 연구를 진행하고 있다. 본 논문은 우리나라의 건축법규에 정의되어 있는 내화설계방법과 영국 등의 선진외국 내화설계 현황을 통하여 문제점을 도출하고, 그것을 토대로 앞으로의 발전 방향을 제시하고자 한다.

  • PDF

A Study on the Enhancement of Fire Resistance Function in Primary Structure Department of Building Type Traditional Market (건물형 전통시장 화재발생시 피난안전성 확보를 위한 규모별 주요구조부 내화보강 연구)

  • Jang, Hye-Min;Hwang, Jung-Ha
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.87-95
    • /
    • 2020
  • This study evaluates the safety of an asylum through a fire simulation of building Type traditional markets. We derive the building's indoor temperature, use the observed variation in temperature gradient to calculate the temperature of the main structure, and finally compares the time required to attain the limit temperature of the structure its time of escape. To ensure improved security of the asylum, the government has proposed a fire-resistance improvement plan for the major structural parts of buildings are not safe with thickness of 0.01 m and 0.035 m. F.ire-resistance reinforcement for small - and medium-sized vehicles is more than 0.025 m, in thickness; moreover safety can be ensured for medium and large-sized vehicles fire using fire resistant reinforcement of over 0.035 m. Accordingly, in order to ensure the safety of an asylum, fire-resistant reinforcement measures may be considered.

Study of Structural Stability for H-section Beams Made of Fire Resistant Steels (FR 490) at High Temperatures by Analytical Method (건축용 내화강재(FR 490) 적용 H형강 보부재의 고온내력 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.52-57
    • /
    • 2014
  • When structural elements of steel framed structures are exposed to fire situations, the structural stability begins to decrease due to dislocation of substantial. The increase of the beam length causes an additional stress and deflection. These can be serious factors to cause a severe failure of structures. To improve the fire resistance of beams, prevention of the heat from a fire by coating with fire protection material is essential for beams. The FR 490 was developed to enhance fire resistance compared with SM 490 steel. However, the fire resistance of FR 490 H-beams has not been evaluated by analysis method since it was developed. In this paper, materials properties in high temperature and a heat transfer and thermal stress theory were used in the evaluation of the fire resistance of FR490 H-beams. The fire resistance of FR490 steel beams was compared with that of SM490 beams. The comparison verified that the structural stability of FR490 beams at high temperature was superior to that of SM490 beams.

Development of Light-weight Fire Protection Materials Using Fly Ash and Light-weight Aggregate (플라이애시 및 경량골재를 활용한 경량 내화성 마감재료 개발)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Lee, Sea-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.95-102
    • /
    • 2012
  • The serious issue of tall building is to ensure the fire resistance of high strength concrete. Therefore, Solving methods are required to control the explosive spalling. The fire resistant finishing method is installed by applying a fire resistant material as a light-weight material to structural steel and concrete surface. This method can reduce the temperature increase of the reinforcement embedded in structural steel and concrete at high temperature due to the installation thickness control. This study is interested in identifying the effectiveness of light-weight fire protection material compounds including the inorganic admixture such as fly ash, meta-kaolin and light-weight aggregate as the fire resistant finishing materials through the analysis of fire resistance and components properties at high temperature. Also, this paper is concerned with change in microstructure and dehydration of the light-weight fire protection materials at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of SEM and XRD. The study results show that the light-weight fire resistant finishing material composed of fly ash, meta-kaolin and light-weight aggregate has the thermal stability of the slight decrease of compressive strength at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate. Developed light-weight fire protection materials showed good stability in high Temperatures. Thus, the results indicate that it is possible to fireproof panels, fire protection of materials.

  • PDF

Study on the Mechanical Properties of Lightweight Mortar for Fire Protection Covering Material in High Strength Concrete (고강도콘크리트용 내화피복재로 활용하기 위한 경량모르타르의 역학적 성상)

  • Lim, Seo-Hyung;Yoo, Suk-Hyung;Moon, Jong-Woog
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.8-13
    • /
    • 2011
  • High strength concrete is the occurrence of explosive spalling associated with high temperature such as a fire. The spalling causes the sever reduction of the cross sectional area with the exposure of the reinforcing steel, which originates a problem in the structural behaviour. The purpose of this study is to investigate the mechanical properties of lightweight mortar using perlite and polypropylene fiber for fire protection covering material. For this purpose, selected test variables were the ratio of water to cement, the ratio of cement to perlite, contents of polypropylene fiber. As a result of this study, it has been found that addition of perlite and polypropylene fiber to mortar modifies its pore structure and reduces its density. And it has been found that a new lightweight mortar can be used in the fire protection covering material.

A Study on the Fire Resistance Design of Buildings Considering the Fire Load Energy Density (화재하중밀도를 고려한 건축물의 내화설계법에 관한 연구)

  • 이평강;이용재;최인창;김회서
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.10-16
    • /
    • 2003
  • The main purpose of this study is to raise the point at issue and to propose reform direction about the current performance criteria of fire resistance through the examination of the fire resistance required for each use of compartment by using performance-based fire safety design method. To examine the performance criteria of fire resistance, this study compared the equivalent time of fire exposure which was calculated by using time-equivalent formulae with the required fire resistance time determined by existing prescriptive code, and surveyed factors such as the fire load energy density, ventilation factor, fire compartment materials and fire compartment geometry in order to calculate the equivalent time of fire exposure.

Fire Resistance Behaviour of High Strength Concrete Members with Vapor Pressure and Creep Models (증기압 및 크리프 모델을 사용한 고강도콘크리트 부재의 내화성능평가)

  • Lee, Tae-Gyu
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.33-40
    • /
    • 2010
  • A numerical model considering the vapor pressure and the creep models, in the form of a analytical program, for tracing the behavior of high strength concrete (HSC) members exposed to fire is presented. The two stages, i.e., spalling procedure and fire resistance time, associated with the thermal, moisture flow, creep and structural analysis, for the prediction of fire resistance behavior are explained. The use of the analytical program for tracing the response of HSC member from the initial pre-loading stage to collapse, due to fire, is demonstrated. The validity of the numerical model used in this program is established by comparing the predictions from this program with results from others fire resistance tests. The analytical program can be used to predict the fire resistance of HSC members for any value of the significant parameters, such as load, sectional dimensions, member length, and concrete strength.