• Title/Summary/Keyword: 내진설계법

Search Result 250, Processing Time 0.026 seconds

Seismic Capacity Evaluation of Bridge Structure using Capacity Spectrum Method (역량스펙트럼법에 의한 교량 구조물의 내진성능평가)

  • 박연수;오백만;박철웅;서병철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.67-73
    • /
    • 2003
  • The present seismic analysis of Road-Bridge Design Standard is on a basis of load-based analysis which lets structures have the strength over load. In this study, the capacity spectrum method, a kind of displacement based method, which is evaluated by displacement of structure, is presented as an alternative to the analysis method based on load. Seismic capacity is performed about the existing reinforced concrete pier which has already secured seismic design by capacity spectrum method. As a result. capacity spectrum method could realistically evaluate the non-elastic behavior of structures easily and quickly and the displacement of structures for variable ground motion level. And it could efficiently apply to an evaluation of seismic capacity about the existing structure and a verification of design for capacity target of the new structure.

Development of Performance-Based Seismic Design of RC Column Retrofitted By FRP Jacket using Direct Displacement-Based Design (직접변위기반설계법에 의한 철근콘크리트 기둥의 FRP 피복보강 내진성능설계법의 개발)

  • Cho, Chang-Geun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.105-113
    • /
    • 2007
  • In the current research, an algorithm of performance-based seismic retrofit design of reinforced concrete columns using FRP jacket has been proposed. For exact prediction of the nonlinear flexural analysis or FRP composite RC members, multiaxial constitutive laws of concrete and composite materials have been presented. For seismic retrofit design, an algorithm of direct displacement-based design method (DDM) proposed by Chopra and Goel (2001) has been newly applied to determine the design thickness of FRP jacket in seismic retrofit of reinforced concrete columns. To compare with the displacement coefficient method (DCM), the DDM gives an accurate prediction of the target displacement in highly nonlinear region, since the DCM uses the elastic stiffness before reaching the yield load as the effective stiffness but the DDM uses the secant stiffness.

Limited-Ductile Seismic Design and Performance Assessment Method of RC Bridge Piers Based on Displacement Ductility (변위연성도 기반 철근콘크리트 교각의 한정연성 내진 설계법과 성능평가 방법)

  • Park, Chang-Kyu;Chung, Young-Soo;Lee, Dae-Hyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2007
  • Until recently Korea is considered to be immune from the earthquake hazard because it is located for away from the active fault. However, we have noticed that recent strong earthquakes inflicted enormous losses on human lives and nation's economy all over the world. Hence, there has been raised the importance of the earthquake resistant design for various infrastructures. In this research, new methodologies for the seismic design and performance assessment of reinforced concrete(RC) bridge pier were proposed from experimental results of 82 circular RC bridge piers and 54 rectangular RC bridge piers tested in domestic and aboard. New seismic design method was based on the concept of the limited ductile design, which could be practically used for low or moderate seismic regions like Korea. Further study for the seismic safety of RC bridge piers was carried out to enhance the seismic performance of aged RC bridge piers, which were designed and constructed before implementing the 1992 seismic design provision in Korea. New formula for the seismic performance assessment of RC bridge piers was proposed and practically used for the decision on the need of repair and retrofit of many aged RC bridge piers.

Development of Performance-Based Seismic Design of RC Column Using FRP Jacket by Displacement Coefficient Method (FRP 보강 철근콘크리트기둥의 변위계수법에 의한 내진성능설계기법 개발)

  • Cho, Chang-Geun;Ha, Gee-Joo;Bae, Su-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.491-497
    • /
    • 2007
  • In the current research, the scheme of displacement-based seismic design for seismic retrofit of concrete structures using FRP composite materials has been proposed. An algorithm of the nonlinear flexural analysis of FRP composite concrete members has been presented under multiaxial constitutive laws of concrete and composite materials. An algorithm for performance-based seismic retrofit design of reinforced concrete columns with FRP jacket has been newly introduced to modify the displacement coefficient method used in reinforced concrete structures. From applications of retrofit design, the method are easy to apply in the practice of retrofit design and give practical prediction of nonlinear seismic performance evaluation of retrofitted structures.

Seismic Performance Evaluation of SRC Composite Column using Direct Displacement Based Design Method (직접변위기반 설계법에 의한 SRC 합성기둥의 내진성능평가)

  • Jung, In-Kju;Park, Soon-Eung;Kim, Dong-Hyuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In this study, the displacement-based design concept, the performance by the existing reinforced concerte column and steel reinforced concrete composite column for SRC purchased the maximum design ground acceleration improvement compared to the performance design. SRC have several advantages such as strength enhancement and high ductility. H-beam or steel tubes were used for embedded elements of the SRC composite columns. SRC cross-section for the P-M diagram and analysis on the nominal bending monent SRC designed for composite columns for disparity estimation is presented to the displacement-based seismic design. Performance improvement of the performance-based design performance targets for the design seismic displacement and design criteria for the direct displacement-based design methods and to improve the seismic performance due to the displacement coefficient method is proposed to design. SRC compared with the RC column designed to improve the performance and displacement ductility ratio displacement results in the performance design results showed significantly improved performance.

A Consideration of Earthquake Simulation Test for Telecommunication Equipment Rack (통신 장치랙 지진모사 실험에 대한 고찰)

  • Kang, Wang-Kyu;Han, Jin-Woo;Woo, Byung-Soo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.296-301
    • /
    • 2007
  • 2007년 1월 20일 20시 56분경 오대산 부근에서 발생한 지진이 제주도를 제외한 전국에서 감지되어 우리 생활에 직접적인 영향을 끼치는 등 더 이상 우리나라도 지진에 안전한 나라가 아니라는 것이 입증되고 있으며, 정부에서도 자연재해대책법에 통신설비에 대한 내진설계 의무화 규정을 포함시켜 현재 시행을 눈앞에 두고 있는 시점에서 통신시설물에 대한 내진성능 평가와 내진대책 수립이 절실히 요구되고 있다. 따라서, 본 논문에서는 지진 발생시에 가장 민감하게 반웅하며 피해가 클 것으로 예상되는 통신 장치랙에 대하여 전력설비의 내진성능 검증에 사용되는 인공 지진파와 미국에서 측정한 실측 지진파를 진동대에 입력, 지진모사 실험을 실시하여 지진시 발생할 수 있는 통신장비의 기능 이상 유무를 확인하고 동적 거동 특성을 분석함으로써 장치랙이 보유한 내진성능을 도출하여 보았다. 이러한 지진모사 실험은 향후 통신 장치랙의 내진성능을 평가하는 기준을 수립하는데 중요한 기초자료로 활용될 것이라 판단된다.

  • PDF

An Establishment of Technical Regulation for Seismic Design on the Telecommunication Installations (통신설비 내진시설 기술기준(안) 수립)

  • Lee, Sang-Mu;Jo, Pyeong-Dong
    • Electronics and Telecommunications Trends
    • /
    • v.23 no.1 s.109
    • /
    • pp.163-169
    • /
    • 2008
  • 최근 빈번한 국제적 지진 발생과 더불어 우리나라에 있어서도 경각심이 조성되어 지진 재해에 대한 법적 대응이 강화되고 있다. 지진 발생시 통신서비스의 긴박성을 인식하여 자연재해대책법상 전기통신기본법에 의한 통신설비가 내진대책 시설의 부류로 지난 2007년 1월 개정 당시 추가되었다. 이에 따라 세부 설치 기준에 대하여는 관계 부처 소관의 해당 법령에서 수립하도록 하고 있다. 이러한 배경 하에 본 논문에서는 통신설비 시설상에 적용하여야 할 내진설계 및 검증을 위한 법적 규격인 기술기준안 수립에 토대가 되는 세부 연구 내용을 소개한다. 먼저 통신설비의 적용 대상 범위를 제시하고 각 설비 그룹 및 분류별로 적용될 내진설계 및 검증 방식을 설명한다. 여기에서 활용할 외국 규격기술에 대하여 언급한다. 아울러 지진 현상과 관련하여 실제 시설상의 여러 가지 고려 대상이 되는 요소들에 대한 기준 요구내용을 제시하였다.

Seismic Design of Mid-to-Low Rise Steel Moment Frames Based on Available Connection Rotation Capacity (접합부 회전능력에 기초한 중/저층 철골모멘트골조의 내진설계)

  • Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.715-723
    • /
    • 2007
  • A displacement-based seismic design procedure was proposed for mid-to-low-rise steel moment frames. The proposed method was totally different from the current R-factor approach in that it directly uses available connection rotation capacity as a primary design variable. To this end, the relationship between available connection rotation capacity and seismic response modification (R factor) was established first; this relationship has been a missing link in current ductility-based design practice. A step-by-step displacement-based iterative design procedure was then proposed and verified using inelastic dynamic analysis.

An Experimental Study of Cyclic Seismic Behavior of Steel Moment Connections Reinforced with Ribs (리브로 보강된 철골 모멘트 접합부의 내진거동에 관한 실험적 연구)

  • Lee, Cheol Ho;Lee, Jae Kwang;Jung, Jong Hyun;Oh, Myeong Ho;Koo, Eun Sook
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.499-508
    • /
    • 2002
  • A simple design method for rib-reinforced seismic steel moment connections has been recently proposed based on the equivalent strut model. An experimental program was implemented to verify the proposed design method, as well as develop the schemes that will prevent cracking at the rib tip where stress concentration was evident. All specimens designed using the proposed method were able to develop a satisfactory connection plastic rotation of 0.04 radian. In addition to rib reinforcement, slight beam flange trimming pushed the plastic hinging and local buckling of the beam away from the rip tip and effectively reduced cracking potential at the rib tip. Using strain gage readings, the strut action of the rib and resulting reverse shear in the beam web were also experimentally identified.

Seismic Performance Preliminary Evaluation Method of Reinforced Concrete Apartments with Bearing Wall system (기존 철근콘크리트 벽식 공동주택의 내진 성능 예비 평가법에 관한 연구)

  • Chung, Lan;Woo, Sung-Sik;Choi, Ki-Young;Park, Tae-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.293-300
    • /
    • 2007
  • In Korea, the seismic design regulations was established since 1988 about regularity scale of structures. However, It was not established about seismic performance and evaluation method as the most existing buildings was constructed before Earthquake-Resistant Design(1988). In this study, for model structures which are 4 units of non-seismic designed apartment and 3 units of seismic designed in Korea performed seismic performance evaluation by suggested KISTC (2004). And the result compare to evaluate Capacity Spectrum Method by using MIDAS Gen and SDS. As a result, we observed that suggested KISTC's method have overestimated for shear stress and drift index. The purpose of this study provides most conformity seismic performance evaluation process and the appropriate method of calculating the seismic performance index in Korea.