• Title/Summary/Keyword: 내재해형

Search Result 17, Processing Time 0.02 seconds

A Study on the Development of Stress Tolerant Structural Systems in the Frame of Built-up Greenhouses (내재해형 조립 비닐하우스 골조 구조시스템 개발 연구)

  • Han, Duckjeon;Shim, Jongseok
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.18 no.2
    • /
    • pp.11-18
    • /
    • 2016
  • The collapsing accidents of greenhouse frames have been increased yearly due to strong wind and heavy snow, but as it was, there were few studies about the structural safety of greenhouses. Therefore, this study was carried out to develop the stress tolerant structural frame systems in built-up greenhouses. The vertical loading experiment of developed scale models were implemented and the developed types of models were simulated by 3-D analysis program in this study. These types of models, which are existing type and honeycomb type, in arch and standard style frames were classified. As a result of this study, it was verified that the honeycomb type model of arch style frame is better than the existing type model of it in stress resistance against snow load and wind load.

Fragility Assessment of Agricultural Facilities Subjected to Volcanic Ash Fall Hazards (농업시설물에 대한 화산재 취약도 평가)

  • Ham, Hee Jung;Choi, Seung Hun;Lee, Sungsu;Kim, Ho-Jeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.493-500
    • /
    • 2014
  • This paper presents findings from the assessment of the volcanic ash fragility for multi-hazard resisting vinyl greenhouse and livestock shed among the agricultural facilities. The volcanic ash fragility was evaluated by using a combination of the FOSM (first-order second-moment) method, available statistics of volcanic load, facility specifications, and building code. In this study, the evaluated volcanic ash fragilities represent the conditional probability of failure of the agricultural facilities over the full range of volcanic ash loads. For the evaluation, 6 types(ie., 2 single span, 2 tree crop, and 2 double span types) of multi-hazard resisting vinyl greenhouses and 3 types(ie., standard, coast, and mountain types) of livestock sheds are considered. All volcanic ash fragilities estimated in this study were fitted by using parameters of the GEV(generalized extreme value) distribution function, and the obtained parameters were complied into a database to be used in future. The volcanic ash fragilities obtained in this study are planning to be used to evaluate risk by volcanic ash when Mt. Baekdu erupts.

Current Status and Development of Greenhouse Models for Oriental Melon Cultivation in Seongju Region (성주지역 참외 재배용 온실구조 현황 및 모델 개발)

  • Lee, Jong Won;Baek, Chul Heun;Lee, Hyun Woo;Chung, Sung Won
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.95-108
    • /
    • 2014
  • The objective of this study is to develop the plastic greenhouse models which are structurally safe under the weather condition of Seongju and have the dimensions suitable for oriental melon cultivation as well. To grasp the structural features of greenhouses in Seongju, the field survey was conducted on 406 farmhouses which included 2,068 greenhouses. The field survey showed that the roof shape of arch type accounted for the highest rate, but recently even span or peach type became more popular and the width and height of greenhouse tended to increase as the period of use was short. The relationship of the width, ridge height and eaves height were established based on field survey data. Using climate data of Gumi adjacent to Seongju, the regressions were determined for the design wind speed and design snow depth depending on recurrence period. To design the greenhouse models against weather disasters in Seongju, the optimal design loads are 23.7 cm of snow depth and $33.8m{\cdot}s^1$ of wind speed. As the design results, four models of single-span greenhouse, two models of double-span greenhouses including extension were developed.

Uplift Capacity of Pipe Foundation for Single-span Greenhouse (단동 온실용 파이프 기초의 인발저항력 검토)

  • Choi, Man Kwon;Yun, Sung Wook;Kim, Ha Neul;Lee, Si Young;Yu, Chan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.69-78
    • /
    • 2015
  • In order to provide design data support for reducing gale damage of single-span greenhouses, this paper experimentally evaluated the uplift capacity of a rafter pipe and continuous pipe foundation (anti-disaster standard), usually used for single-span greenhouses according to compaction ratio, embedded depth, and soil texture. In the reclaimed soil (Silt loam) and the farmland soil (Sandy loam), the ultimate uplift capacities of rafter pipe were 72.8kgf and 60.7kgf, respectively, and those of continuous pipe foundation were 452.7kgf and 450.3kgf, respectively at an embedded depth of 50cm and compaction rate of 85% (the hardest ground condition). The results showed that the ultimate uplift capacity of continuous pipe foundation was significantly improved at more than 6 times that of the rafter pipe. The soil texture considered in this paper had a sand content of 35%~59% and a silt content of 39%~58%, and it was shown that the ultimate uplift capacity did not have a significant difference depending on soil texture, and these results show that installing the rafter pipe and continuous pipe foundation while maintaining appropriate compaction conditions can give an advantage in securing stability in the farmland of greenhouses without significantly being influenced by soil texture. Based on the results of this paper, it was determined that maintaining a compaction rate above 75% for the continuous pipe foundation and above 85% for the rafter pipe was advantageous for securing stability in greenhouses. Especially when continuous pipe foundation of anti-disaster standard was applied, it was determined to be significantly advantageous in acquiring stability in greenhouses to prevent climate disaster.

Performance Evaluation of Disaster Resistance of Plastic Greenhouse in Jeju Region according to 2017 Design Code Draft (2017년도 온실설계기준(안)에 따른 제주지역 비닐하우스의 내재해성 평가)

  • Ko, Dong-Woo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2020
  • As the number of plastic greenhouses has increased in Korea, the damage from typhoons and snow has also increased. Structural design codes for a disaster-resistant plastic greenhouse have been revised over the last few decades. In particular, the revised code draft in 2017 have changed in many ways compared to the 1995 code. Nevertheless, There is no study of the effect of new design code on plastic greenhouse. Therefore, this study evaluated the safety of plastic greenhouse against wind load according to 1995 and 2017 codes for type 1 houses, which is most commonly built in Jeju, through comparing the analytical results of plastic greenhouses designed by 1995 code and 2017 code draft. The results are as follows. (1) The uplift load due to the negative pressure on the roof of the plastic greenhouse increased significantly in 2017 code draft. (2) Since the existing members could not meet the design requirements, the rafters had to be replaced with members of the same cross-section as the columns. (3) Due to excessive lifting, measures were also needed to prevent lifting at the foundation of the plastic greenhouse.

Uplift Capacity of Shallow Foundation for Greenhouse (온실용 얕은기초의 인발저항력 검토)

  • Yun, Sung Wook;Choi, Man Kwon;Lee, Si Young;Kang, Dong Hyeon;Moon, Sung Dong;Yu, Chan;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.187-195
    • /
    • 2015
  • In this study, a field test of uplift load was carried out using 15 greenhouse foundations fabricated in full scale on a sand soil to examine the uplift capacity of plastic film greenhouse and glasshouse foundations for disasterproof standard. As a result, the maximum uplift capacity of the target greenhouse foundations was shown to be in the range from 11.6kN to 82.4kN according to the differences between the forms and sizes of the foundation. As a result of the examination of the applicability using the field uplift load test result of the theoretical equation proposed for maximum uplift capacity calculation of greenhouse foundations, we found that in general, the conventional theoretical equation for the calculation provided numerical values close to the field test results. However, the soil considered in this study was a sand; thus, in the future, verifying the conventional theoretical equation for the uplift capacity calculation of a cohesive soil would be necessary.

Rotational Stiffness of Connection in Multi-span Vinyl Greenhouse (내재해형 연동 비닐하우스 접합부의 회전강성)

  • Kim, Min-Sun;Choi, Ki-Sun;Shin, Ji-Uk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.3-10
    • /
    • 2018
  • Recently, severe damage to domestic horticultural structures is frequently observed due to extreme climate effects. To minimize the structures' damage, a study on the structural stability of multi-span vinyl greenhouses is needed. This paper presents to measure the rotational stiffness of different connectors to improve the design capacities of the specification. The paper investigated fourteen types of the different connectors, which was commonly used in the multi-span greenhouses, and three different types of the connectors predicted to be under moment-connection were selected: i) T-clamp, ii) U-clamp, iii) C-clamp. Static loading tests for three different connectors were performed to measure the rotational stiffness. Additionally, the boundary condition for the structural design was proposed based on the experimental results of the rotational stiffness. One of three connectors, C-clamp had larger rotational stiffness than other connectors, and the experimental results presented the three connectors had boundary conditions; i) T-clamp was pinned-connection, ii) U-clamp was semi-rigid connection, iii) C-clamp was semi-rigid connection.

Estimation of Standard Load for Disaster-Resistant Design of Outdoor Signboards (내재해형 옥외광고물 설계를 위한 표준하중 산정)

  • Lee, Sungsu;Kim, Junyeong;Ham, Hee Jung;Kim, Ji Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.131-140
    • /
    • 2016
  • Recent destructions of outdoor signboards have frequently been caused by strong wind, resulting in damage on the property and human livelihood. One of the major causes of the problems is inadequate implementation of structural design code to the outdoor signboards which are vulnerable to wind. This leads to this paper to present the design guideline of wind-resistant outdoor signboards. In order to estimate the design wind speed, basic wind speeds over Korea suggested by KBC(2015)(revision) are corrected with land surface roughness and topography of the terrain and installation height of the signboard. This paper also suggested the procedure of wind load estimation for different types of outdoor signboards; wall attached type, wall ribbed type and ground erected type. Since the process involves complex calculation to some extent, this paper presents summarized version of wind load estimation from non-professional point of view.

Structural Analysis Modeling of Disaster Resilient Greenhouse Structures (내재해형 온실구조의 해석을 위한 구조모델)

  • Jung, Ji-Eun;Kim, Dae-Jin;Kim, Hong-Jin;Shin, Seung-Hoon;Kim, Jin-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.7-15
    • /
    • 2017
  • This paper presents the results of the parametric study to investigate the effects of several analysis modeling parameters such as support conditions, member connectivities and cable member stiffness on the main mode shapes and natural frequencies of a representative disaster resilient greenhouse structure. In addition, an ambient vibration test was performed on the representative greenhouse structure and its main mode shapes and natural frequencies were obtained. By comparing the experimental and analysis results, a proper analysis modeling method of the representative greenhouse structure was proposed.

Analysis of Structural Types and Design Factors for Fruit Tree Greenhouses (과수재배용 온실의 구조유형과 설계요소 분석)

  • Nam, Sang-Woon;Ko, Gi-Hyuk
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • In order to provide basic data for the development of a controlled environment cultivation system and standardization of the structures, structural status and improvement methods were investigated for the fruit tree greenhouses of grape, pear, and peach. The greenhouses for citrus and grape cultivation are increasing while pear and persimmon greenhouses are gradually decreasing due to the advance of storage facilities. In the future, greenhouse cultivation will expand for the fruit trees which are more effective in cultivation under rain shelter and are low in storage capability. Fruit tree greenhouses were mostly complying with standards of farm supply type models except for a pear greenhouse and a large single-span peach greenhouse. It showed that there was no greenhouse specialized in each species of fruit tree. Frame members of the fruit tree greenhouses were mostly complying with standards of the farm supply type model or the disaster tolerance type model published by MIFAFF and RDA. In most cases, the concrete foundations were used. The pear greenhouse built with the column of larger cross section than the disaster tolerance type. The pear greenhouse had also a special type of foundation with the steel plate welded at the bottom of columns and buried in the ground. As the results of the structural safety analysis of the fruit tree greenhouses, the grape greenhouses in Gimcheon and Cheonan and the peach greenhouses in Namwon and Cheonan appeared to be vulnerable for snow load whereas the peach greenhouse in Namwon was not safe enough to withstand wind load. The peach greenhouse converted from a vegetable growing facility turned out to be unsafe for both snow and wind loads. Considering the shape, height and planting space of fruit tree, the appropriate size of greenhouses was suggested that the grape greenhouse be 7.0~8.0 m wide and 2.5~2.8 m high for eaves, while 6.0~7.0 m wide and 3.0~3.3 m of eaves height for the pear and peach greenhouses.