• Title/Summary/Keyword: 내재에너지

Search Result 83, Processing Time 0.024 seconds

As-Rigid-As-Possible Dynamic Deformation with Oriented Particles (방향성 입자를 이용한 ARAP 동적 변형)

  • Choi, Min Gyu
    • Journal of Korea Game Society
    • /
    • v.17 no.1
    • /
    • pp.89-98
    • /
    • 2017
  • This paper presents a novel ARAP (as-rigid-as-possible) approach to real-time simulation of physics-based deformation. To cope with one, two and three dimensional deformable bodies in an efficient, robust and uniform manner, we introduce a deformation graph of oriented particles and formulate the corresponding ARAP deformation energy. For stable time integration of the oriented particles, we develop an implicit integration scheme formulated in a variational form. Our method seeks the optimal positions and rotations of the oriented particles by iteratively applying an alternating local/global optimization scheme. The proposed method is easy to implement and computationally efficient to simulate complex deformable models in real time.

Design, Fabrication and Evaluation of a Conduction Cooled HTS Magnet for SMES (SMES용 전도냉각형 고온초전도 자석의 설계, 제작 및 평가)

  • Bae, Joon-Han;Kim, Hae-Jong;Seong, Ki-Chul
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.185-190
    • /
    • 2011
  • This paper describes design, fabrication, and evaluation of the conduction cooled high temperature superconducting (HTS) magnet for superconducting magnetic energy storage (SMES). The HTS magnet is composed of twenty-two of double pancake coils made of 4-ply conductors that stacked two Bi-2223 multi-filamentary tapes with the reinforced brass tape. Each double pancake coil consists of two solenoid coils with an inner diameter of 500 mm, an outer diameter of 691 mm, and a height of 10 mm. The aluminum plates of 3 mm thickness were arranged between double pancake coils for the cooling of the heat due to the power dissipation in the coil. The magnet was cooled down to 5.6 K with two stage Gifford McMahon (GM) cryocoolers. The maximum temperature at the HTS magnet in discharging mode rose as the charging current increased. 1 MJ of magnetic energy was successfully stored in the HTS magnet when the charging current reached 360A without quench. In this paper, thermal and electromagnetic behaviors on the conduction cooled HTS magnet for SMES are presented and these results will be utilized in the optimal design and the stability evaluation for conduction cooled HTS magnets.

Effect of a Smoking Cessation Motivational Program for Adolescents (흡연 청소년을 위한 금연동기화 프로그램의 효과)

  • Shin, Sung-Rae;Lee, Chung-Ok;Jeong, Goo-Churl
    • Child Health Nursing Research
    • /
    • v.19 no.2
    • /
    • pp.130-139
    • /
    • 2013
  • Purpose: In this study an examination was done of the effects of a adolescent smoking cessation motivational program on smoking temptation, internal motivation, stage of smoking cessation and quit rate. The study was done with a nonequivalent control group pretest-posttest design. Methods: Participants in the experimental group were adolescents who smoked and were referred to the program by their high school teachers. They participated in the smoking cessation motivational program for 60 minutes per session, once or twice a week for six weeks. Participants in the control group were selected from the same age group within the school and the program was provided after the posttest was completed. t-test, Mann-Whitney test, and ${\chi}^2$-test were used to analyze data. Results: The level of smoking temptation, internal motivation and stage of smoking cessation had significant change in comparison to the pretest whereas the control group did not exhibit these changes. Conclusion: The results of the study indicate that a smoking cessation motivational program for adolescents is an effective strategy to increase smoking cessation motivation in adolescents, and can be utilized as an effective intervention for adolescents who smoke.

Ch'oe Han-gi's Reflection on Relationalities in Existence (최한기의 존재론적 관계성 성찰)

  • Rhee, Myung-Su
    • The Journal of Korean Philosophical History
    • /
    • no.59
    • /
    • pp.395-423
    • /
    • 2018
  • Since the middle of the 19th century, East Asia, especially Korea, was oppressed externally by the imperialism of Japan and others while internally long-lasting political convention like in-law government was driving the country into troubles at home and abroad. Witnessing such a situation and building up scholarly capability through reading over nearly all spheres, a Confucian philosopher, Ch'oe Han-gi (崔漢綺, 1803-1877), philosophized about the clue to the solution of such a choking phenomenon. Ch'oe believed that there was movement, ki (matter, material force, energy) of revolving transformation inherent in all things, people, or objects. Grasping even the principle and order of existence inherent in things from the viewpoint of ki, he tried to change the traditional theory on the law of existence of things that there existed an ontological reason lacking in motility, which was more dominant than anything existing in the universe and which ruled over the world. From this, he elucidated that the Way, an identity that rules over all affairs and things, was not simply one but diverse. This means, on one hand, that he tentatively accepted the relativity of things. On the other hand, he also taught us "oneness in all things" in which all including human beings exist in close connection to each other transcending the relativity or "agreement" in which they exist in harmony as one and "unity" in which they are united into one.

Analysis of the Economic and Environmental Effects of Upstream Carbon Tax: Focusing on the Steel Industry (상류부문 탄소세 도입의 경제적·환경적 효과 분석: 철강산업을 중심으로)

  • Dong Koo Kim;Insung Son
    • Environmental and Resource Economics Review
    • /
    • v.32 no.1
    • /
    • pp.47-75
    • /
    • 2023
  • Compared to the EU, which legislates the Carbon Border Adjustment System (CBAM), the United States' carbon border adjustment policy movement is still relatively slow. Recently, however, a related bill has been proposed in the United States, and research institutes have been presenting research results on how to introduce an upstream carbon tax rather than an emission trading system and carry out carbon border adjustment based on it. Therefore, in this study, we looked at the economic and environmental effects of introducing this type of upstream carbon tax and carbon border adjustment in Korea. If an upstream carbon tax of KRW 30,000 per ton of CO2 is applied to the net supply of domestic fossil energy, the expected carbon tax revenue is approximately KRW 22.9961 trillion, equivalent to about 5.7% of the total revenue of the Korean government of KRW 402 trillion in 2019. In addition, the carbon dioxide content of the steel sector, calculated based on the energy supply and demand status of the steel sector, which emits the most greenhouse gas emissions in Korea and has a considerable amount of overseas exports, was 106.22 million tons of CO2. On the other hand, assuming that the upstream carbon tax of 30,000 won per ton of CO2 embodied is directly passed on to the production cost of the steel sector, the carbon tax burden in the steel sector is estimated to reach approximately KRW 3.1865 trillion. Even after deducting KRW 1.1599 trillion in export refunds estimated by using the share of exports of steel products, the net carbon tax burden on steel products for domestic demand amounts to KRW 2.0266 trillion, which is analyzed to act as a factor in increasing the price of steel products.

Domestic Gas Turbine Industry Development Strategies Based on Domestic Supply Chain and Potential Analysis (공급사슬 및 내재역량 분석을 통해 고찰한 국내 가스터빈 산업 국산화 개발 전략)

  • Hyun, Jungwoo;Lee, Sangkyun;Jin, Hwan Jun;Park, Chinho
    • Journal of Energy Engineering
    • /
    • v.29 no.1
    • /
    • pp.13-24
    • /
    • 2020
  • Many countries are actively engaging in the reduction of greenhouse gas emissions, and as part of this effort, gradually reducing the portion of coal power generation and instead increasing the portion of power generations from renewable energy sources and natural gas. Korea is taking a similar policy to expand LNG power generation for the next decade. There is a concern, though, about the policy not being aligned with the domestic industry development, since only a few products are being made in Korea along the LNG power generation industry value chain. Therefore in this paper, we first looked at the current status of the gas turbine and high temperature parts industry used for LNG power generation in Korea, and then looked into the industrial issues and challenges through the analysis of supply chains of the domestic gas turbine industry. Finally, we tried to propose strategies to revitalize and localize the domestic gas turbine and high temperature parts industry. The proposed strategies can be summarized as 1) creation of domestic gas turbine manufacturing ecosystem via construction of gas turbine alliance, 2) strategic R&D support for localization of gas turbine and high temperature parts, and 3) provision of domestic testbeds for technology evaluation and commercialization.

A Study on the Environment-friendly Planning Elements on High-Class Houses Kuangajeong in Chosun Dynasty (관가정(觀稼亭)으로 본 조선시대 상류주택의 환경친화적 계획요소 분석)

  • Heo, Jun;Lee, Shi Young;Song, Byeong Hwa
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.3
    • /
    • pp.164-177
    • /
    • 2011
  • This study aims to examine the traditional living space to reflect the environment-friendly design methods and principles of reestablishment. To do so, this study carried on a related literature study and field survey. The traditional living space in terms of the environmental friendliness is reflected on site selection and space composition, and utilization of natural energy and natural materials. Focused on the Kwangajeong in Yangdong Village, this study is to identify eco-friendly techniques on the traditional living space. As a result, it shows that Kwangajeong with the side of the southeast in site selection had been considered in aspect of environmental control such as sunshine and solar radiation. Also building construction techniques had been used to minimize the variation of terrain. In aspect of environmental conservation, Kwangajeong had structurally arranged the gate, an inner yard and an inner floor to allow good ventilation. In aspect of space composition, Kwangajeong with the emphasis of scenic view had utilized the methods that attract external landscape through the control of its fences. Environment-friendly techniques and control principles in traditional space had been developed by a long experience through the long periods and the traditional techniques suitable for local climate and local environment have been developed. The technical development of these techniques to resolve the global environmental and energy issues and create a more pleasant living environment of human beings might be critical.

Implementation of a Prefetch method for Secondary Index Scan in MySQL InnoDB Engine (MySQL InnoDB엔진의 Secondary Index Scan을 위한 Prefetch 기능 구현)

  • Hwang, Dasom;Lee, Sang-Won
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.208-212
    • /
    • 2017
  • Flash SSDs have many advantages over the existing hard disks such as energy efficiency, shock resistance, and high I/O throughput. For these reasons, in combination with the emergence of innovative technologies such as 3D-NAND and V-NAND for cheaper cost-per-byte, flash SSDs have been rapidly replacing hard disks in many areas. However, the existing database engines, which have been developed mainly assuming hard disks as the storage, could not fully exploit the characteristics of flash SSDs (e.g. internal parallelism). In this paper, in order to utilize the internal parallelism intrinsic to modern flash SSDs for faster query processing, we implemented a prefetching method using asynchronous input/output as a new functionality for secondary index scans in MySQL InnoDB engine. Compared to the original InnoDB engine, the proposed prefetching-based scan scheme shows three-fold higher performance in the case of 16KB-page sizes, and about 4.2-fold higher performance in the case of 4KB-page sizes.

A Study on p-y Curves with Pressuremeter Tests in Jeju Basalt Rock (공내재하시험을 이용한 제주 현무암의 p-y 곡선 연구)

  • Yang, Ki-Ho;Huh, Jong-Chul;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.129-137
    • /
    • 2015
  • Recently, offshore wind farms are increasingly expected, because there are huge resource and large site in offshore. Jeju island has optimum condition for constructing a wind energy farm. Unlike the mainland, Jeju island has stratified structure distribution between rock layers sediments due to volcanic activation. In these case, it can be occur engineering problems in whole structures as well as the safety of foundation as the thickness and distribution of sediment under top rock layer can not support sufficiently the structure. One of the most obvious applications of the pressuremeter test is the solution of the problem of laterally loaded piles. A hyperbolic non-linear p-y criterion for rock is developed in this study that can be used in LPILE program, to predict the deflection, moment, and shear reponses of a shaft under the applied lateral loads. Finally, a comparison between the predicted and measured response at two different sites is shown to give an idea of the accuracy of the IFP method.

Numerical Investigation of Cooling Performance of Liquid-cooled Battery in Electric Vehicles (하이브리드/전기 자동차용 수냉식 배터리 셀의 냉각성능에 관한 수치 해석적 연구)

  • Kwon, Hwabhin;Park, Heesung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.403-408
    • /
    • 2016
  • Lithium-ion batteries are commonly employed in hybrid electric vehicles (HEVs), and achieving high energy density in the battery has been one of the most critical issues in the automotive industry. Because liquid cooling containing antifreeze is important in automotive batteries to enable cold starts, an effective geometric configuration for high-cooling performance should be carefully investigated. Battery cooling with antifreeze has also been considered to realize successful cold starts. In this article, we theoretically investigate a specific property of an antifreeze cooling battery system, and we perform numerical modeling to satisfy the required thermal specifications. Because a typical battery system in HEVs consists of multiple stacked battery cells, the cooling performance is determined mainly by the special properties of antifreeze in the coolant passage, which dissipates heat generated from the battery cells. We propose that the required cooling performance can be realized by performing numerical simulations of different geometric configurations for battery cooling. Furthermore, we perform a theoretical analysis as a design guideline to optimize the cooling performance with minimum power consumption by the cooling pump.