• Title/Summary/Keyword: 내쉬 균형

Search Result 37, Processing Time 0.02 seconds

Optimization of Multi-objective Function based on The Game Theory and Co-Evolutionary Algorithm (게임 이론과 공진화 알고리즘에 기반한 다목적 함수의 최적화)

  • Sim, Kwee-Bo;Kim, Ji-Yoon;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.491-496
    • /
    • 2002
  • Multi-objective Optimization Problems(MOPs) are occur more frequently than generally thought when we try to solve engineering problems. In the real world, the majority cases of optimization problems are the problems composed of several competitive objective functions. In this paper, we introduce the definition of MOPs and several approaches to solve these problems. In the introduction, established optimization algorithms based on the concept of Pareto optimal solution are introduced. And contrary these algorithms, we introduce theoretical backgrounds of Nash Genetic Algorithm(Nash GA) and Evolutionary Stable Strategy(ESS), which is the basis of Co-evolutionary algorithm proposed in this paper. In the next chapter, we introduce the definitions of MOPs and Pareto optimal solution. And the architecture of Nash GA and Co-evolutionary algorithm for solving MOPs are following. Finally from the experimental results we confirm that two algorithms based on Evolutionary Game Theory(EGT) which are Nash GA and Co-evolutionary algorithm can search optimal solutions of MOPs.

A Study on The Rational Decision-Making Support for Solving Conflicts through Analysis of Game Theory -Focused on Jirisan National Park - (게임이론 분석을 통한 갈등해결의 합리적 의사결정 지원에 관한 연구 -지리산국립공원에 대하여 -)

  • Kim, Eui-Gyeong;Kim, Dong-Hyeon;Shin, Hye-Jin;Kim, Dae-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.6
    • /
    • pp.669-679
    • /
    • 2008
  • Jirisan National Park was designated on December 29, 1967 as the first national park in Korea and that caused continuous conflicts between the violation of the right to hold property in this area due to several regulations following the designation and the nature preservation for the value of heritage for descendants. Thus, the objective of this study is to find a proposal for making decision based on the rationality that is able to solve these conflicts. To achieve the objective of this study, this study applies a game theory that supports a reasonable decision making process for solving these conflicts between interest groups around Jirisan National Park in which the component of this game consists of Jirisan National Park, residents, and interest groups. The Nash equilibrium obtained by the analysis of the strategy of interest groups for the use and preservation of forests and its rewards from the strategy as an nonecooperative game showed a behavior that chases their own benefits and causes lots of troubles. However, in the case of the results obtained from a cooperative game based on the strategy that includes some public interests accepted by interest groups and its rewards, it represented an aspect that solves conflicts through achieving a strategical set, which shows a win-win outcome even though the results of this cooperative game may present less rewards than that of the Nash equilibrium. Whereas, if there exists the public interests accepted by interest groups and truth for protecting such public interests, it is considered that it becomes a way that solves present structural troubles in the National Parks in Korea due to the fact that there exist uncertainties caused by the human rationality.

Game Theory Application in Wetland Conservation Across Various Hypothetical City Sizes (다양한 이론적 도시규모에서의 습지 보전을 위한 게임 이론 적용)

  • Ran-Young Im;Ji Yoon Kim;Yuno Do
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.10-20
    • /
    • 2024
  • The conservation and restoration of wetlands are essential tasks for the sustainable development of human society and the environment, providing vital benefits such as biodiversity maintenance, natural disaster mitigation, and climate change alleviation. This study aims to analyze the strategic interactions and interests among various stakeholders using game theory and to provide significant grounds for policy decisions related to wetland restoration and development. In this study, hypothetical scenarios were set up for three types of cities: large, medium, and small. Stakeholders such as governments, development companies, environmental groups, and local residents were identified. Strategic options for each stakeholder were developed, and a payoff matrix was established through discussions among wetland ecology experts. Subsequently, non-cooperative game theory was applied to analyze Nash equilibria and Pareto efficiency. In large cities, strategies of 'Wetland Conservation' and 'Eco-Friendly Development' were found beneficial for all stakeholders. In medium cities, various strategies were identified, while in small cities, 'Eco-Friendly Development' emerged as the optimal solution for all parties involved. The Pareto efficiency analysis revealed how the optimal solutions for wetland management could vary across different city types. The study highlighted the importance of wetland conservation, eco-friendly development, and wetland restoration projects for each city type. Accordingly, policymakers should establish regulations and incentives that harmonize environmental protection and urban development and consider programs that promote community participation. Understanding the roles and strategies of stakeholders and the advantages and disadvantages of each strategy is crucial for making more effective policy decisions.

Effect of Generation Capacity Constraints on a Mixed Strategy Nash Equilibrium in a Multi-Player Game (다자게임에서 발전력제약이 복합전략 내쉬균형에 미치는 영향)

  • Lee, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.34-39
    • /
    • 2008
  • Nash Equilibrium(NE) is essential to investigate a participant's bidding strategy in a competitive electricity market. Congestion on a transmission line makes it difficult to compute the NE due to causing a mixed strategy. In order to compute the NE of a multi-player game, some heuristics are proposed with concepts of a key player and power transfer distribution factor in other studies. However, generation capacity constraints are not considered and make it more difficult to compute the NE in the heuristics approach. This paper addresses an effect of generation capacity limits on the NE, and suggest a solution technique for the mixed strategy NE including generation capacity constraints as two heuristic rules. It is reported in this paper that a role of the key player who controls congestion in a NE can be transferred to other player depending on the generation capacity of the key player. The suggested heuristic rules are verified to compute the mixed strategy NE with a consideration of generation capacity constraints, and the effect of the generation constraints on the mixed strategy NE is analyzed in simulations of IEEE 30 bus systems.

Approach for Evaluating the Nash Equilibrium of Cournot Game Model for N-Gencos by Using Payoff Matrix in Wholesale Electricity Market (도매전력시장에서 N-발전사업자의 보수행렬을 이용한 꾸르노 모델의 내쉬균형점 도출을 위한 방법론)

  • Park Jong-Bae;Lim Jung-Youl;Lee Ki-Song;Shin Joong-Rin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.2
    • /
    • pp.97-106
    • /
    • 2005
  • This paper presents a method for evaluating the nash equilibrium of the Cournot model for N-Gencos in wholesale electricity market. In wholesale electricity market, the strategies of N-Gencos can be applied to the game model under the conditions, which the Gencos determine their strategies to maximize their benefit. Generally, the Lemke algorithm has known as the approach to evaluate the mixed nash equilibrium in the only two-player game model. In this paper, we have developed the necessary condition for obtaining the mixed nash equilibrium of N-player by using the Lemke algorithms. However, it is difficult to find the mixed nash equilibrium of two more players by using the analytic method since those have the nonlinear characteristics. To overcome the above problem, we have formulated the object function satisfied with the proposed necessary conditions for N-player nash equilibrium and applied the modified particle swarm optimization (PSO) method to obtain the equilibrium for N-player. To present the effectiveness the proposed necessary condition and the evaluation approach, this paper has shown the results of equilibrium of sample system and the cournot game model for 3-players.

A Dynamic Pricing Negotiation Model in the Online Ticket Resale Market (온라인 티켓 재판매 시장에서의 Dynamic Pricing 협상모델)

  • Cho, Jae-Hyung
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.4
    • /
    • pp.133-148
    • /
    • 2009
  • This study has tried to suggest a new model that can effectively redistribute the tickets in the online ticket resale market, while suggesting a new allocation mechanism based on an agent negotiation. To this end, this study has analyzed an auction in the online ticket resale market through Game theory. As a result of new agent mechanism, it has been proved that the price stability of ticket resale market leads to an increase. An agent negotiation helps to stabilize the ticket prices that are usually inclined to rise at auction, benefiting all the participants in the negotiations, consequently showing a Pareto solution. Especially, a framework for a negotiation process is suggested and domain and processes ontology are designed interrelatedly. With this modeling, a possibility of Ontology based agent negotiation is suggested.

  • PDF

Radio Resource Management using a Game Theoretic Approach Method in Heterogeneous Wireless Networks (이종 네트워크 환경에서 게임 이론적 접근방법을 이용한 무선 자원관리)

  • Kim, Nam-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2178-2184
    • /
    • 2015
  • With the development of wireless network technologies, mobile users may use various networks easily and expect more advanced services. On the other hand, it may bring on some problems with network resource management that should lead the service provider to improve the current service quality and manage the network resource efficiently. This paper proposes the optimized radio resource management (RRM) scheme that integrates the Grey Relational Analysis (GRA) and game theory. The first applies the GRA to determine the Grey Relation Coefficient (GRC) factors that represent the network preference, and the network provider then selects the requested service that provide maximum payoff through Nash Equilibrium. Six requested services that have one application service among four different types of service classes were considered and the game was played repeatedly. In WiMAX, WLAN 1 and WLAN 2 game, the maximum payoff of each players was 93, 90.6 and 92.8 respectively. The experimental results show that every requested service can be selected by the network provider. Consequently, the proposed radio resource management mechanism is more effective in heterogeneous wireless networks.

Power Control Algorithm with Finite Strategies: Game Theoretic Approach (게임이론을 이용한 유한 전략 집합을 갖는 전력제어 알고리즘)

  • Kim, Ju-Hyup;Jang, Yeon-Sik;Lee, Deok-Joo;Hong, Een-Kee
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.87-96
    • /
    • 2009
  • The purpose of this paper is to analyze the power control problem in wireless communications with game theoretic approach. The major contribution of the present paper is that we formulated the problem as a game with a finite number of strategies while most of the previous game theoretic power control literatures modeled with continuous game in which there are infinite number of strategies. It should be noted that the closed-loop power control would be performed in a discrete manner, power up or down from the present level of power with fixed power control step size. We model the current closed-loop power control scheme with the famous Prisoner's dilemma model and show that the power-up strategy is Nash equilibrium. That is, every mobile tries to increase their power and approach to their maximal power. Thus, the outcome of current power control (Nash equilibrium) is inefficient. In order to attain efficient power control for the environment where ICI(Inter-Cell Interference is severe, we developed a new payoff function in which the penalty mechanism is introduced and derived conditions under which power-down becomes Nash equilibrium strategy for all players. Furthermore we examined the trajectory of equilibrium power when the power control game will be played repeatedly.

  • PDF

A Study on Evaluation Method of Mixed Nash Equilibria by Using the Cournot Model for N-Genco. in Wholesale Electricity Market (도매전력시장에서 N명 발전사업자의 꾸르노 모델을 이용한 혼합 내쉬 균형점 도출 방법론 개발 연구)

  • Lim, Jung-Youl;Lee, Ki-Song;Yang, Kwang-Min;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.639-642
    • /
    • 2003
  • This paper presents a method for evaluating the mixed nash equilibria of the Cournot model for N-Gencos. in wholesale electricity market. In the wholesale electricity market, the strategies of N-Genco. can be applied to the game model under the conditions which the Gencos. determine their stratgies to maximize their benefit. Generally, the Lemke algorithm is evaluated the mixed nash equlibria in the two-player game model. However, the necessary condition for the mixed equlibria of N-player are modified as the necessary condition of N-1 player by analyzing the Lemke algorithms. Although reducing the necessary condition for N-player as the one of N-1 player, it is difficult to and the mixed nash equilibria participated two more players by using the mathmatical approaches since those have the nonlinear characteristics. To overcome the above problem, this paper presents the generalized necessary condition for N-player and proposed the object function to and the mixed nash equlibrium. Also, to evaluate the mixed equilibrium through the nonlinear objective function, the Particle Swarm Optimization (PSO) as one of the heuristic algorithm are proposed in this paper. To present the mixed equlibria for the strategy of N-Gencos. through the proposed necessry condition and the evaluation approach, this paper proposes the mixed equilibrium in the cournot game model for 3-players.

  • PDF

Tariffs on Irrelevant Industries (무관한 산업에 대한 정벌적 관세부과)

  • Rhee, Byung-Chae
    • International Commerce and Information Review
    • /
    • v.13 no.4
    • /
    • pp.399-410
    • /
    • 2011
  • Traditionally, tariffs have been used to protect domestic industries. In particular, a country with more bargaining power makes a punitive threat to maintain a certain level of market share in the market of other country. In this paper, we study the effect of punitive tariffs on an irrelevant industry. In particular, when a country tries to achieve a market share or quantity target in an industry, we examine the effect of threats to impose tariffs on the major export of another industries which are irrelevant to the targeted industry. Using a simple duopoly model, we show that there is a Cournot-Nash equilibrium which supports that a country has an incentive to resolve a trade dispute voluntarily to protect its major export industry under the credible treat of punitive tariffs. This result is mainly due to the fact that the trade policy of a country concerns the aggregate benefits from trade over all its export industries. To obtain this result, this paper employs the linkage between the targeted and irrelevant industries by using the lobby of the irrelevant industry to curb the targeted industry. A lot of recent bilateral trade agreements can be applied to our results.

  • PDF