• Title/Summary/Keyword: 내부 보강재

Search Result 126, Processing Time 0.02 seconds

Structural Health Monitoring using Acceleration Response Features of PSC Girder Strengthened with Internal and External Tendons (내부 및 외부 긴장재로 보강된 PSC 거더의 가속도 응답 특성을 이용한 구조건전성 모니터링)

  • Hong, Dong-Soo;Park, Jae-Hyung;Kim, Jeong-Tae;Ryu, Yeon-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.352-355
    • /
    • 2010
  • 본 논문에서는 내부 및 외부 긴장재로 보강된 PSC 거더의 가속도 응답 특성을 이용한 구조건전성 모니터링을 위해 실험 및 수치해석 결과를 비교 분석하는 연구를 수행하였다. 첫 번째로, 내부 및 외부 긴장재로 보강된 모형 PSC 거더를 제작하였다. 두 번째로, 모형 PSC 거더의 형상, 재료 및 경계조건과 긴장재의 배치를 고려하여 초기 유한요소모델을 설계하였다. 세 번째로, 다수의 내부 및 외부 긴장력 조건하의 모형 PSC 거더에 대한 동특성 추출 실험 및 수치해석을 수행하였다. 마지막으로, 실험결과와 수치해석 결과를 비교 분석하여 가속도 응답 특성을 이용한 내부 및 외부 긴장재로 보강된 PSC 거더의 구조건전성 모니터링에 대한 적용성을 검토하였다.

  • PDF

Fabrication and Evaluation of Composite Panel with Hat-shaped Stiffeners (모자(Hat)형 보강재를 가진 복합재 패널의 제작과 평가)

  • Kim, Geon-Hui;Lim, Do-Wan;Choi, Jin-Ho;Kweon, Jin-Hwe;Lee, Tae-Joo;Song, Min-Hwan;Shin, Sang-Joon
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.31-39
    • /
    • 2010
  • In this paper, composite panels with hat-shaped stiffeners were made using the co-curing, co-bonding and secondary bonding methods. Co-curing is a manufacturing method in which the hat part and the plate are cured simultaneously in a manner that is more cost effective than other methods. Co-bonding is a method in which the stacked prepregs are cured with other cured parts, and secondary bonding is a method in which cured parts are bonded together using an adhesive. A rubber mold was manufactured for co-curing of composite panel with hat-shaped stiffeners, and finite element analyses were done to evaluate the expanding pressure of the rubber mold consistent with the curing temperature. The manufactured panels were also evaluated using a 3-D measurement tester and an ultrasonic tester. Pull-off tests were performed to evaluate their mechanical properties.

The Experimental Study on Reinforced Slope with Geocomb (지오콤 비탈면 보호공법의 활용에 관한 실험적 연구)

  • Ahn, Won Sik;Kim, Chul Moon;Kim, Ug Ki;Kim, Young Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.37-43
    • /
    • 2012
  • Generally levee or revetment becomes weak by erosion (scour) due to saturation of ground with infiltration, flowing water. So when levee or revetment is constructed, slope reinforcement must be installed to prevent failure. In this study experimental test was performed for verifying shear resistance, horizontal permeability and rooting ability of Geocomb designed to address the shortcomings of 3-dimension Geocell. Geocomb is one of geosynthetics and the advanced system of geogrid. According to the results of shear test, internal friction angle of reinforced ground with Geocomb was increasing compared with existing material and horizontal permeability of ground with Geocomb was bigger than geocell, porous geocell reinforcing ground. Lastly rooting ability of geocomb is most excellent. These results determined for the inner surface of the cell is net structure.

Evaluation of Mechanical Properties and Crack Resistant Performance in Concrete with Steel Fiber Reinforcement and CSA Expansive Admixture (CSA 팽창재를 혼입한 강섬유 보강 콘크리트의 역학적 성능 및 균열 저항성능 평가)

  • Choi, Se-Jin;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 2014
  • In order to prevent brittle failure of concrete, steel fiber reinforcement is effective composite material. However ductility of steel fiber reinforced concrete may be limited due to shrinkage caused by large content of cement binder. Chemical prestressing for steel fiber reinforcement in cement matrix can be induced through expansive admixture and this can increase reinforcing effect of steel fiber. In this study, mechanical performances in concrete with CSA (Calcium sulfoaluminate) expansive admixture and steel fiber reinforcement are evaluated. For this work, steel fiber reinforcement of 1 and 2% of volume ratio and CSA expansive admixture of 10% weight ratio of cement are added in concrete. Mechanical and fracture properties are evaluated in concrete with steel fiber reinforcement and CSA expansive admixture. CSA concrete with steel fiber reinforcement shows increase in tensile strength, initial cracking load, and ductility performance like enlarged fracture energy after cracking. With appropriate using expansive admixture and optimum ratio of steel fiber reinforcement, their interactive action can effectively improve brittle behavior in concrete.

Evaluation of Installation and Arrangement Effects of Internal Ring Stiffener for Tubular K-joints with Axially Loaded Braces (지부재에 축하중을 받는 K형 관이음부의 내부 환보강재의 설치 및 배치효과 평가)

  • Cho, Hyun-Man;Ryu, Yeon-Sun;Lim, Dong-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.267-274
    • /
    • 2011
  • The effect of internal ring stiffeners is numerically evaluated for reinforcement of tubular K-joints. Finite element analyses are performed to compute stress of un-stiffened and ring-stiffened K-joints subjected to axial loading. The influence of loading condition and geometrical parameters of ring stiffener on joint behavior is assessed to determine the installation effect of single and double ring stiffeners. The arrangement effect of ring stiffener are evaluated using quantitative analysis compared single ring with double ring stiffeners. Based on the numerical results, practical size of ring stiffener is proposed for design of tubular K-joints.

Stability Evaluation of Reinforced Subgrade with Short Geogrid for Railroad During Construction (짧은 보강재를 사용한 철도보강노반의 시공 중 안정성 평가)

  • Kim, Dae Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.11-20
    • /
    • 2014
  • The behaviors and stability of reinforced subgrade with short geogrid were examined and evaluated during construction. First of all, analytical approach for the minimum length of geogrid was performed to guarantee stability during construction loading state. Secondly, the economic aspects for reinforced subgrade were compared with between domestic standards applying with 0.7 H reinforcement length and new way to mix short and long reinforcement. Full scale railroad subgrade was constructed with the size of 5 m high, 6m wide, and 20m long to verify the stability of the subgrade with the length of 0.3 H, 0.35 H, 0.4 H reinforcement. Total 51 sensors were installed to measure settlement, bulging, and the change of stress of the subgrade. It is concluded that the reinforced subgrade with short(0.35H, 35% of height) geogrid had stability within allowable level of deformation and stress increment during construction.

Numerical analysis of single and double ring-stiffened tubular K-joints (단일 및 이중 환보강 K형 관이음부의 수치해석)

  • Lim, Dong-Joo;Cho, Hyun-Man;Ryu, Yeon-Seon;Shim, Won-Il
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.318-321
    • /
    • 2010
  • 강관구조물은 여러 이점으로 인해 다양한 분야에 적용되고 있으며, 관이음부의 구조강도를 증가시키기 위해 다양한 보강법이 적용되고 있다. 대형 관이음부 보강방법 중 내부 환보강재를 이용한 보강법이 사용되고 있다. 본 연구에서는 축방향력을 받는 K형 관이음부에 단일 및 이중 환보강재를 적용할 경우의 최대 응력 변화를 검토하였다. 내부 환보강재의 적용성 검토를 위해 유한요소 모델을 이용한 수치해석을 수행하였다. 각 지부재에 작용하는 하중과 내부 환보강재의 기하학적 형상에 따른 구조적 거동을 평가하였고, 수치해석 결과 환보강재의 보강효과가 정량적으로 산정되어 적용성이 검토되었다.

  • PDF

Stability evaluation of reinforced earth walls based on large-scale modular blocks (대형 축조블록을 이용한 보강토옹벽의 안정성 평가)

  • Han, Jung-Geun;Kim, Min-Woo;Hong, Kikwon;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.143-151
    • /
    • 2014
  • This paper describes external and internal stability of reinforced earth wall using large-scale modular block and geogrid reinforcement. The evaluation for external and internal stability was conducted to analyze effect of wall height, reinforced soil (or backfill soils) and reinforcement strength. The external stability showed that the analysis cases were satisfied with design criteria, when the required minimum length and vertical spacing of reinforcement were 0.7H and 1m, respectively. The internal stability conformed that some cases were satisfied with design criteria in $25^{\circ}$ of internal friction angle of reinforced soil. Expecially, it will be applicable as wall structure considering a structural stability and economic efficiency based on evaluation of internal stability.

A Numerical Study on the Static Strength of Tubular X-Joints With an Internal Ring Stiffener (환보강 X형 관이음부의 정적강도에 관한 수치적 연구)

  • Ryu Yeon-Sun;Cho Hyun-Man
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.265-275
    • /
    • 2005
  • The objective of this paper is to numerically assess the behavior of tubular X-joints with an internal ing stiffener, and to evaluate the reinforcement effect of a ring stiffener, and to establish the strength formulae. Nonlinear finite element analysis is used to compute the static strength of axially loaded tubular joints. Numerical and experimental results are in good agreement for tubular X-joints. The chord lengths of simple and ring-stiffened X-joints are suggested to reduce chord end effect. And, internal ring stiffener is found to be efficient In improving static strength of tubular X-joints. Maximum strength ratios are calculated as $1.5\sim3.5$. Regression analyses are performed considering practical size of ring stiffener and strength estimation formulae for tubular X-joints with an internal ring stiffener are proposed.

Structural Intensity Analysis of Stiffened Plate Using Assumed Mode Method (Assumed Mode Method를 이용한 보강판의 진동인텐시티 해석)

  • Dae-Seung Cho;Sa-Soo Kim;Sang-Min Jung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.76-86
    • /
    • 1998
  • Structural intensity of plates experiencing bending vibration is analytically evaluated using the modal analysis based on assumed mode method. To evaluate the convergence of structural intensity according to the number of superposition modes, the power obtained by structural intensity integration over the closed curve containing the excitation source is compared with the power injected into plates. The erect of power reduction due to the material internal loss is evaluated using the intensity around a localized damping point, In addition, the dominant component among internal forces in the power transfer by the bending vibration of plates and the change of power flow due to stiffener are also investigated.

  • PDF