• Title/Summary/Keyword: 내부표정

Search Result 54, Processing Time 0.029 seconds

A Study on the Automation of Interior Orientation and Relative Orientation (내부표정과 상호표정의 자동화에 관한 연구)

  • Jeong, Soo;Park, Choung-Hwan;Yun, Kong-Hyun;Yeu, Bock-Mo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.2
    • /
    • pp.105-116
    • /
    • 1999
  • Owing to the rapid development of computer system and the introduction of image processing technique, recent photogrammetric studies have been concentrated on the automation of photogrammetric orientation work that have been carried out by skilled professionals in analog and/or analytical pbotogrammetric field. To automate the whole photogrammetric work, the automation of the orientation processes including interior, relative and absolute orientation should be preceded. This study aims to automate interior orientation and relative orientation process. For this purpose, we applied Hough transform to interior orientation process and object space matching technique to relative orientation process. As the result of this study, we can present a method to automate interior and relative orientation process that has been semi-automatically operated in most commercial digital photogrammetric workstations currently available.

  • PDF

Evaluation of Long-term Stability of Interior Orientation Parameters of a Non-metric Camera (비측량용 카메라 내부표정요소의 장기간 안정성 평가)

  • Jeong, Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.283-291
    • /
    • 2011
  • In case of metric cameras, not only fiducial marks but also various parameters related to camera lens are provided to users for the interior orientation process. The parameters have been acquired through precise camera calibration in laboratory by camera maker. But, in case of non-metric cameras, the interior orientation parameters should be determined in person by users through camera calibration with great number of control points. The interior orientation parameters of metric cameras are practically used for long time. But in case of non-metric cameras, the long-term stability of the interior orientation parameters have not been established. Generally, the interior orientation parameters of non-metric cameras are determined in every photogrammetric work. It's been an obstacle to use the non-metric camera in photogrammetric project because so many control points are required to get the interior orientation parameters. In this study, camera calibrations and photogrammetric observations using a non-metric camera have been implemented 25 times periodically for 6 months and the results have been analyzed. As a result, long-them stability of the interior orientation parameters of a non-metric camera is analyzed.

Evaluation of DSM Accuracy Based on UAS with Respect to Camera Calibration Methods and Application of Interior Orientation Parameters (카메라 검정 방법과 내부표정 요소 적용에 따른 UAS 기반의 DSM 정확도 평가)

  • Yu, Jae Jin;Son, Seung-Woo;Park, Hyun-Su;Jeon, Hyung-Jin;Yoon, Jeong-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.787-798
    • /
    • 2017
  • In the present study, the interior orientation parameters were computed by using various kinds of methods. Five DSMs (Digital Surface Models) in total were produced by applying interior orientation parameters to the image processing, and the accuracy was evaluated. In order to use interior orientation parameters as independent variables of DSM accuracy, flight parameters and exterior orientation parameters that can affect the accuracy of DSM were set to be the only fixed variables. From the results of the present study, the RMSE of campaign 3-2 was found to be 0.0305 m, which was the most favorable result. Thus, it is advisable to produce DSM by adjusted interior parameters after figuring out the interior orientation parameters using a camera calibration program at laboratory environment.

Recognizing Facial Expressions Using a Neural Network (신경망을 이용한 얼굴 표정인식)

  • 신영숙;이일병
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.04a
    • /
    • pp.101-105
    • /
    • 1998
  • 기존의 표정인식 연구는 Ekman의 기본정서모형의 특에 의하여 표정인식이 이루어져왔다. 그러나 이러한 6가지 기본정서(행복, 놀람, 공포, 분노, 혐오, 슬픔)에 의한 표정인식은 6개 정서 중에서 선택하는 간제 선택법이 아닌 자유응답방식을 택했을때는 훨씬 인식률이 떨어진다. 이는 표정이 기본정서이외에도 여러 가지 미묘한 마음상태를 표현하고 있기 때문이다. 본 연구는 섬세한 표정인식을 우한 방법으로, 차원모형을 근거로 MLP를 적용한 표정인식을 수행하였다. 차원 모형에 의한 표정은 3가지 차원으로 하나의 표정을 이룬다. 3가지 차원은 쾌-불쾌, 각성-수면과 외부지향-내부지향이다. 3가지 차원을 갖는 각각의 표정은 MLP에 의하여 쾌-불쾌차원 68%, 각성-수면차원 60%, 외부지향-내부지향차원 76%의 인식률을 보였다. 연구결과에서 차원모형에 근거한 표정인식을 통하여 기존의 표정인식을 통하여 기존의 기본정서모형의 한계성을 극복하고 섬세한 표정인식을 수행할 수 있었다.

  • PDF

The Change of Interior Orientation Parameters in Zoom Lens Digital Cameras (줌렌즈 디지털 카메라의 내부표정요소 변화)

  • Kim, Gi-Hong;Jeong, Soo;Kim, Baek-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • Recently, as digital photogrammetry bas been widely used in various fields including construction, it is also being applied to several industries. It is essential for interior orientation to determine accurate focal length of camera, lens distortion, location of principal point in order to apply high quality digital camera to digital photogrammetry. In this study we conducted interior orientation for zoom lens camera with regular time and zoom factors and analyzed change of radial distortion parameters and location of principal point to evaluate interior orientation stability. As a result, radial distortion parameters($k_1,k_2$) are converged into zero by increasing zoom factors. There are correlation between the change of location of point and zoom factors. The displacement of $x_p$, $y_p$ increase as zoom factors rise high.

Stability Analysis of a Stereo-Camera for Close-range Photogrammetry (근거리 사진측량을 위한 스테레오 카메라의 안정성 분석)

  • Kim, Eui Myoung;Choi, In Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.123-132
    • /
    • 2021
  • To determine 3D(three-dimensional) positions using a stereo-camera in close-range photogrammetry, camera calibration to determine not only the interior orientation parameters of each camera but also the relative orientation parameters between the cameras must be preceded. As time passes after performing camera calibration, in the case of non-metric cameras, the interior and relative orientation parameters may change due to internal instability or external factors. In this study, to evaluate the stability of the stereo-camera, not only the stability of two single cameras and a stereo-camera were analyzed, but also the three-dimensional position accuracy was evaluated using checkpoints. As a result of evaluating the stability of two single cameras through three camera calibration experiments over four months, the root mean square error was ±0.001mm, and the root mean square error of the stereo-camera was ±0.012mm ~ ±0.025mm, respectively. In addition, as the results of distance accuracy using the checkpoint were ±1mm, the interior and relative orientation parameters of the stereo-camera were considered stable over that period.

Semi-automatic Camera Calibration Using Quaternions (쿼터니언을 이용한 반자동 카메라 캘리브레이션)

  • Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • The camera is a key element in image-based three-dimensional positioning, and camera calibration, which properly determines the internal characteristics of such a camera, is a necessary process that must be preceded in order to determine the three-dimensional coordinates of the object. In this study, a new methodology was proposed to determine interior orientation parameters of a camera semi-automatically without being influenced by size and shape of checkerboard for camera calibration. The proposed method consists of exterior orientation parameters estimation using quaternion, recognition of calibration target, and interior orientation parameter determination through bundle block adjustment. After determining the interior orientation parameters using the chessboard calibration target, the three-dimensional position of the small 3D model was determined. In addition, the horizontal and vertical position errors were about ${\pm}0.006m$ and ${\pm}0.007m$, respectively, through the accuracy evaluation using the checkpoints.

Identifying Specifications of Flat Type Signboards Using a Stereo Camera (스테레오 카메라를 이용한 판류형 간판의 규격 판별)

  • Kwon, Sang Il;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.69-83
    • /
    • 2020
  • Signboards are standardized according to national legislation for the safety of pedestrians and disaster prevention in urban areas. Signboards should be installed according to the standard. However, it is not easy to manage the signboards systematically due to the number of signboards that have been installed for a long time and frequently changing stores. In this study, we proposed a methodology for distinguishing signboards that deviated from the standard. To this end, the signboard was photographed using a stereo camera, and then the three-dimensional coordinates of the signboard were determined from the signboard image to calculate the signboard's horizontal and vertical dimensions to determine the signboard's specifications. In order to determine the interior and relative orientation parameters of the stereo camera, an outdoor three-dimensional building was used as the test field. Then, the image coordinates of four vertices of the signboard were extracted from the signboard image taken from about 15m ~ 22m distance using deep learning. After determining the signboard's three-dimensional coordinates by using the interior and relative orientation parameters of the stereo camera and the image coordinates of the four vertices of the signboard, the horizontal and vertical sizes of the signboard were calculated, resulting in an error of about 2.7cm on average. The specifications for the ten flat-type signboards showed that all of the horizontal sizes were compliant with the specifications, but the vertical sizes exceeded about 36.5cm on average. Through this, it was found that maintenance of flat-type signboards is needed overall.

Application of Area Based Matching for the Automation of Interior Orientation (내부표정의 자동화를 위한 영역중심 영상정합기법 적용)

  • 유복모;염재홍;김원대
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.4
    • /
    • pp.321-330
    • /
    • 1999
  • Automation of observation and positioning of fiducial marks is made possible with the application of image matching technique, developed through the cooperative research effort of computer vision and digital photogrammetry. The major problem in such automation effort is to minimize the computing time and to increase the positional accuracy. Except for scanning and ground control surveying, the interior orientation process was automated in this study, through the development of an algorithm which applies the image matching and image processing techniques. The developed system was applied to close-range photogrammetry and the analysis of the results showed 54% improvement in processing time. For fiducial mark observation during interior orientation, the Laplacian of Gaussian transformation and the Hough transformation were applied to determine the accurate position of the center point, and the correlation matching and the least squares matching method were then applied to improve the accuracy of automated observation of fiducial marks. Image pyramid concept was applied to reduce the computing time of automated positioning of fiducial mark.

  • PDF

Development of Close Range Photogrammetric Model for Measuring the Size of Objects (피사체의 크기 측정을 위한 근접사진측량모델 개발)

  • Hwang, Jin Sang;Yun, Hong Sic;Kang, Ji Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.129-134
    • /
    • 2009
  • This study is on the development of photogrammetric methode for measuring the size of object without control points. The model is composed of interior orientation parameters, which are consist of specifications of CCD camera and lens distortion parameters, and exterior orientation parameters, which are calculated through relative orientation and scale adjustment. We evaluated the accuracy of the model to find that it is possible to measure the size of object using the model.