• Title/Summary/Keyword: 내부온도변화

Search Result 1,154, Processing Time 0.023 seconds

Temperature Characteristics of Wet-mixing Solidified Soil Pavement (습식교반경화토포장의 온도특성)

  • Yoo Ji-Hyeung;Lee Seong-Won;Kim Dae-Sung
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.45-54
    • /
    • 2006
  • The Construction policy of government ever since 1970s have brought the economical growth, but has been causing environmental problems. Most roads were paved either asphalt concrete or portland cement concrete. These types of pavements has caused to rise temperature by making local heat islands in urban during summer time. Recently the wet-mixing solidified soil pavement, a kind of soil-cement, has developed and has been applied to the environment-oriented pavement. The solidified soil wet-mixed is placed on the subgrade along with asphalt concrete and portland cement concrete. Thermistors are laid in these field test pavements. The temperature gradients of these pavements are automatically measured with time. As the results of this test, the equation estimating surface temperature of pavement is proposed by analyzing measured temperature data. It is shown that the temperature change within the surface layer due to the change of air temperature is the greatest in the asphalt mixture and the least in the solidified soil mixture. Since it is proven that this wet-mixing solidified soil pavement emit less radiant heat than other existed pavements. Therefore this type of pavement can be successfully applied to the roads, such as walks, parkways, and bikeways, which are required to be human-friendly and environment-oriented.

  • PDF

Ignition Temperature of Hydrogen/Air Mixture by Hot Wire in Pipeline (열선에 의한 파이프라인내의 수소/공기 혼합기의 착화온도)

  • Kim, Dong-Joon
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.8-13
    • /
    • 2014
  • In order to improve safety for hydrogen network infrastructure, the ignition temperature by hot wire was investigated for different hydrogen compositions in pipelines. The result shows that minimum temperature for ignition decreased with decreasing hydrogen composition. The minimum temperature was confirmed at a hydrogen composition of approximately 10 vol.%. The one of the reasons is supposed that buoyancy force should generate the convection of gas mixture. It was also found that humidity had a little effect on ignition temperature, flame temperature.

Development of Monitoring and Control System for Continuous Flow Sterilizing of Foods in Liquid Phase (액상식품의 연속살균을 위한 공정감시 및 제어장치 개발)

  • 안용구;홍지향;고학균
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.389-394
    • /
    • 2002
  • 1) HTST공정에 적합한 공정감시 및 제어알고리즘을 개발하였고, 일련의 모든 프로그램은 G언어의 일종인 Labview 5.1을 사용하였다. 프로그램상에는 온도, 압력, 유량을 표시하는 아날로그 및 디지털 창을 마련하여 장치내부의 상태를 쉽게 파악학 수 있도록 하였다. 2) 살균온도를 9$0^{\circ}C$로 설정하였을 때 온도제어 오차는 0.05$^{\circ}C$였으며 이것은 Negiz와 Cinar(1995)의 온도제어 오차 0.22$^{\circ}C$보다 정밀한 제어가 이루어짐을 알 수 있었다. 3), 운전중 원료의 과살균을 방지하지 하기 위해 각 각의 경우에 스팀온도를 제어하였고 목표온도까지 가열하기 위한 각 유량과 초기온도별 스팀온도를 구하였다. 4) 본 연구의 이 후 과제로는 유량의 변화에 따른 홀딩튜브의 길이와 살균시간의 상관관계를 규명하여 실제 HTST공정에 적용될 수 있는 수학적 모델링을 구현해야 할 것으로 생각된다.

  • PDF

Utilization of ventilation Pipe to Decrease Commondity Temperature and Rot of Soybean Sprouts (환기봉을 이용한 재배용기 내부 콩나물 품온 저하 및 부패 경감)

  • 이영상
    • Journal of Bio-Environment Control
    • /
    • v.9 no.2
    • /
    • pp.101-106
    • /
    • 2000
  • The practicality of utilizing ventilation pipe to enhance soybean sprout productivity by lowering commodity temperature and resultant sprout rot was tested. The ventilation pipes with holes for aeration were vertically installed inside of a sprout cultivation container prior to adding soaked soybean seeds. The time-series changes in sprout commodity temperature and resultant growth, yield, marketable sprout percentage, and rot of soybean sprouts were measured. The ventilation pipes effectively decreased sprout commodity decreased sprout commodity temperature by 4.7$^{\circ}C$. Ventilation pipes also enhanced sprout yield and marketable sprout percentage by 3.9% and 4.0%, respectively, while reducing sprout rot by 4.1%. In conclusion, ventilation pipe seems a practical and effective non-chemical method to enhance the productivity of soybean sprouts.

  • PDF

Conjugate Simulation of Heat Transfer and Ablation in a Small Rocket Nozzle (소형 시험모터의 노즐 열전달 및 삭마 통합해석)

  • Bae, Ji-Yeul;Kim, Taehwan;Kim, Ji Hyuk;Ham, Heecheol;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • Ablative material in a rocket nozzle is exposed to high temperature combustion gas, thus undergoes complicated thermal/chemical change in terms of chemical destruction of surface and thermal decomposition of inner material. Therefore, method for conjugate analysis of thermal response inside carbon/phenolic material including rocket nozzle flow, surface chemical reaction and thermal decomposition is developed in this research. CFD is used to simulate flow field inside nozzle and conduction in the ablative material. A change in material density and a heat absorption caused by the thermal decomposition is considered in solid energy equation. And algebraic equation under boundary layer assumption is used to deduce reaction rate on the surface and resulting destruction of the surface. In order to test the developed method, small rocket nozzle is solved numerically. Although the ablation of nozzle throat is deduced to be higher than the experiment, shape change and temperature distribution inside material is well predicted. Error in temperature with experimental results in rapid heating region is found to be within 100 K.

Estimation of Overall Heat Transfer Coefficient for Single Layer Covering in Greenhouse (일중 피복온실의 관류열전달계수 산정)

  • Hwang, Young-Yun;Lee, Jong-Won;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.108-115
    • /
    • 2013
  • This study was conducted to suggest a model to calculate the overall heat transfer coefficient of single layer covering for various greenhouse conditions. There was a strong correlation between cover surface temperature and inside air temperature of greenhouse. The equations to calculate the convective and radiative heat transfer coefficients proposed by Kittas were best fitted for calculation of the overall heat transfer coefficient. Because the coefficient of linear regression between the calculated and measured cover surface temperature was founded to 0.98, the slope of the straight line is 1.009 and the intercept is 0.001, the calculation model of overall heat transfer coefficient proposed by this study is acceptable. The convective heat transfer between the inner cover surface and the inside air was greater than the radiative heat transfer, and the difference increased as the wind speed rose. The convective heat transfer between the outer cover surface and the outside air was less than the radiative heat transfer for the low wind speed, but greater than for the high wind speed. The outer cover convective heat flux increased proportion to the inner cover convective heat flux linearly. The overall heat transfer coefficient increased but the cover surface temperature decreased as the wind speed increased, and the regression function was founded to be logarithmic and power function, respectively.

Variation Profiles of Temperature by Green Area of Apartments in Gangnam, Seoul (서울 강남지역 아파트단지의 녹지면적에 따른 온도변화 모형)

  • 홍석환;이경재
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.1
    • /
    • pp.53-60
    • /
    • 2004
  • This study was carried out to investigate the effect of green area in apartment complexes to variation of temperature. The inside temperature of each site was estimated by analyzing Landsat ETM+ image data. The factors on variation of temperature were landcover type, building density, and Normalised Difference Vegetation Index(NDVI). The results of correlation between inside temperature of apartment complex and land cover type showed that the green area ratio had negative(-) correlation and impermeable pavement ratio had positive(+) correlation. Building-to-land ratio was not significant with inside temperature. A coefficient of correlation between the temperature value and the value of permeable pavement ratio added up green area ratio was higher than a coefficient of correlation between the temperature value and the value of permeable pavement ratio added up impermeable pavement ratio. Thus we may define that permeable pavement area decrease urban temperature with green area in apartment complex. Floor area ratio had no significant correlation with inside temperature. Inside temperature was decreased as the NDVI was increased. To establish the temperature distribution model in a development apartment complex, As the result of regression analysis between inside temperature as dependent variable and permeable pave ratio+green area ratio, green area ratio, building-to-land ratio and NDIT as independent variables, only permeable pavement ratio added up green area ratio of the independent variables was accepted fur regression equation in both two seasons and adjusted coefficient of determination was 41.4 on September, 2000 and 40.4 on June,2001.

Heat and Mass Transfer in Hygroscopic Rotor During Adsorption and Desorption Process (흡착과 탈착 과정 동안 제습 로터의 열/물질 전달)

  • Shin, Hyun-Geun;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.977-984
    • /
    • 2013
  • A hygroscopic rotor comprises many microchannels with high adsorption characteristics. In this study, the iterative adsorption/desorption processes that were affected by the humid air flow in a channel were numerically simulated. In consideration of the accuracy and computational costs, in the desiccant layer, only surface diffusion was considered in this simulation. The results were compared with the previous numerical results and found to show good agreement. By conjugating the heat and mass transfer between the desiccant and the flow layers, temporal and spatial changes in the vapor mass fraction, adsorbed liquid water mass fraction, and temperature in the channel were presented.

Low-Temperature Characteristics of Type 4 Composite Pressure Vessel Liner according to Rotational Molding Temperature (타입 4 복합재 압력용기 라이너의 회전 성형 온도에 따른 저온 특성)

  • Jung, Hong-Ro;Park, Ye-Rim;Yang, Dong-Hoon;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.147-152
    • /
    • 2022
  • Low-temperature characteristics according to internal temperature conditions during rotational molding of Type 4 pressure vessel liners were studied in this paper. Since rotational molding has a sensitive effect on the formability of the liner depending on the temperature conditions, the temperature conditions for the polyamide used should be accurately set. The structural changes of polyamide as the liner material was analyzed the surface by atomic force microscope (AFM), and the crystallinity measured with a differential scanning calorimeter (DSC) is used to evaluate the change of the mechanical strength value at low temperature. In addition, the formability of the liner was confirmed by observation of the yellow index inside the liner. As a result, as the melting range of the internal temperature becomes wider, the yellow index shows a lower value, and the elongation and impact characteristics at low temperatures are improved. It was also confirmed that the structure of the polyamide was uniform and the crystallinity was high by AFM and DSC. These experimental results contribute to the improvement of characteristics at low temperatures due to changes in temperature conditions during rotational molding.

Comparative analysis of internal parameters of battery equivalent circuit model considering room temperature and low temperature conditions (상온 및 저온 조건을 고려한 배터리 등가회로 모델 내부 파라미터 비교 분석)

  • Kim, Yongsoon;Park, Jinhyeong;Jang, Sung-Soo;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.462-463
    • /
    • 2018
  • 본 논문에서는 환경조건에 따른 18650 고용량 원통형 배터리의 안정성과 신뢰성을 확보하기 위해, 상온 및 저온에서 전기적 특성 실험을 실시하였다. 배터리 등가회로 모델을 기반으로 온도조건에 따라 내부 파라미터를 비교 및 분석하였으며, 이를 통해 배터리의 특성 변화를 나타내었다.

  • PDF