• Title/Summary/Keyword: 내구 성능

Search Result 1,221, Processing Time 0.028 seconds

Analysis of Equivalent Torque of 78 kW Agricultural Tractor during Rotary Tillage (78 kW급 농업용 트랙터의 로타리 경운 작업에 따른 등가 토크 분석)

  • Baek, Seung-Min;Kim, Wan-Soo;Park, Seong-Un;Kim, Yong-Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.359-365
    • /
    • 2019
  • This paper is a basic study for the performance evaluation, durability improvement and optimal design of tractor transmission. The engine torque of the 78 kW agricultural tractor during rotary tillage was measured using CAN communication. It was calculated with equivalent torque and then analyzed. In order to develop a reliable tractor, it is important to convert measured torque in various agricultural operations into equivalent torque and analyze it. The equivalent torque was calculated using Palmgren-Miner's rule, which is a representative cumulative damage law. The equivalent torque of rotary tillage period and steering period are 229.2 and 136.7 Nm, respectively. The maximum and average torque during rotary tillage period are 336.0 and 234.4 Nm, respectively. The maximum and average torque of the steering period are 288.0 and 134.6 Nm, respectively. The engine torque in rotary tillage period is higher than in the steering period because of cultivation of soil through PTO. The maximum and rated torque of engine are 387.0 and 323.0 Nm, respectively, which are 183% and 136% higher than the equivalent torque during rotary tillage and of steering section. Because transmission of agricultural tractor in Korea companies is generally designed by the rated torque of engine, there is a difference from measured torque during agricultural operations. Therefore, it is necessary to consider it for optimal design.

Evaluating Chloride Absorption of Reinforced Concrete Structures with Crack Widths (균열 폭에 따른 콘크리트 구조물에서의 염화물 흡수 평가)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.10-16
    • /
    • 2020
  • Deterioration of reinforced concrete structure caused by chloride ingress is the main issue and regrading this, many studies have been investigated with both experiments and computational modelling. In addition to chloride diffusion, chloride sorption should be considered as a chloride transport mechanism in concrete structure and cracks formed in concrete structures are the main variable to evaluate the performance of the structures. In this study, after making two types of cracks width (0.1 and 0.3 mm) in reinforced concretes, chloride absorption tests were performed. Weight change and colour change using 0.1 AgNO3 solution from the samples were performed to measure chloride ingress. Image processing was also carried out to quantify range of colour change in carck face. From the result, it were confirmed that the amount of chloride absorption increases with exposure time and increasing crack width, and chlorides reached at steel depth within 1 hour. It would be possible that chloride can move through interface bewteen steel and concrete, thereby further study regarding this is required.

Thermal Energy Capacity of Concrete Blocks Subjected to High-Temperature Thermal Cycling (열사이클을 적용한 고온 조건 콘크리트 블록의 열용량 특성)

  • Yang, In-Hwan;Park, Ji-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.571-580
    • /
    • 2020
  • In this study, an experimental study on storage media for thermal energy storage system was conducted. For thermal energy storage medium, concrete has excellent thermal and mechanical properties and also has various advantages due to its low cost. In addition, the ultra-high strength concrete reinforced by steel fibers exhibits excellent durability against exposure to high temperatures due to its high toughness and high strength characteristics. Moreover, the high thermal conductivity of steel fibers has an advantageous effect on heat storage and heat dissipation. Therefore, to investigate the temperature distribution characteristics of ultra-high-strength concrete, concrete blocks were fabricated and a heating test was performed by applying high-temperature thermal cycles. The heat transfer pipe was buried in the center of the concrete block for heat transfer by heat fluid flow. In order to explore the temperature distribution characteristics according to different shapes of the heat transfer pipe, a round pipe and a longitudinal fin pipe were used. The temperature distribution at the differnent thermal cycles were analyzed, and the thermal energy and the cumulated thermal energy over time were calculated and analyzed for comparison based on test results.

An Experimental Study on the Mechanical Healing Properties of Self-Healing Mortar with Solid Capsules Using Crystal Growth Type Inorganic Materials (결정성장형 무기재료 활용 고상 캡슐을 혼합한 자기치유 모르타르의 역학적 치유 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Nam, Eun-Joon;Oh, Sung-Rok;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.581-589
    • /
    • 2020
  • In this paper, a solid capsule was prepared using a crystal growth type inorganic material capable of hydration reaction, the quality and mechanical healing properties of self-healing mortar with solid capsules were evaluated. Solid capsules were mixed 5% by mass of cement. Reloading test results of compressive load, it was found to improve about 20% on average for the natural healing effect of Plain, in the case of the elastic range, the healing rate was about 79% at the 7 days of healing age and 98% at the 28 days of healing age. Reload test results of flexural load, in the case of the elastic range, the healing rate was about 79% at the 7 days of healing age and 98% at the 28 days of healing age. Through these results, it is judged that the healing performance of solid capsules has also an effect on mechanical healing properties such as strength in addition to the durability properties obtained by the permeability test. Since the strength tends to decrease as the solid capsules are mixed, it is considered necessary to compensate.

Engineering Properties of CB Cut-off Walls Mixed with GGBS (고로슬래그 미분말을 혼합한 CB 차수벽의 공학적 특성)

  • Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.33-39
    • /
    • 2022
  • For a slag-cement-bentonite (slag-CB) cut-off wall, GGBS replaces a part of the cement mixed to build a CB cut-off wall, which is used to block the flow and leakage of pollutants or groundwater; prevent seawater infiltration; and repair or reinforcement an aged embankments. Slag-CB cut-off walls are used in various applications in different fields where groundwater control is required due to its excellent characteristics. Such properties include high strength, low permeability, high durability and chemical resistance. However, despite these advantages, slag-CB cut-off walls are not extensively studied in Korea and thus are not applied in many cases. Particularly, GGBS, which replaces cement in a mixture, has different properties depending on its country of production. Consequently, it is necessary to perform various studies on slag-CB cut-off walls that use GGBS produced in Korea in order to increase its usability. This study has evaluated the bleeding rate, setting time, strength, and permeability in relation to the cement replacement rate of GGBS produced in Korea for slag-CB cut-off walls, with the aim to increase its usability. The evaluation found that slag-CB cut-off walls, made of a mixture containing GGBS produced in Korea, have a lower bleeding rate and permeability, and higher strengththan CB cut-off walls. It was also analyzed that such improved performance is more effective with a higher cement replacement rate of GGBS.

The Comparison of Apparent Chloride Diffusion Coefficients in GGBFS Concrete Considering Sea Water Exposure Conditions (해양 폭로 환경에 따른 GGBFS 콘크리트의 겉보기 염화물 확산계수 비교)

  • Yoon, Yong-Sik;Jeong, Gi-Chan;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.18-27
    • /
    • 2022
  • In this study, the time-dependent chloride ingress behavior in GGBFS concrete was evaluated considering marine exposure conditions and the properties of concrete mixtures. The concrete mixture for this study had 3 levels of water to binder ratio and the substitution rate of GGBFS, and outdoor exposure tests were performed considering submerged area, tidal area, and splash area. According to the evaluation results of diffusion coefficient considering properties of concrete mixtures, as the substitution rate of GGBFS increased, the decreasing rate of the diffusion coefficient decreased based on exposure periods of 730 days(2 years). As the evaluation result of the diffusion behavior according to the marine exposure conditions, the diffusion coefficient was evaluated in the order of submerged area, tidal area, and splash area. In tidal area, a relatively high diffusion coefficient was evaluated due to the repetition of wet and dry seawater. In this study, the effects of GGBFS substitution rate on the decreasing behavior of apparent chloride diffusion coefficient was analyzed in consideration of exposure conditions and periods. Linear regression analysis was performed with apparent chloride diffusion coefficient as output value and GGBFS substitution rate as input value. After 730 days of exposure, the effect of GGBFS on diffusion coefficient was significantly reduced. Even for OPC concrete, after 730 days, the diffusion coefficient was as low as that of GGBFS concrete, so the gradient of the regression equation decreased significantly. It is thought that improved durability performance for chloride ingress can be secured before 730 days through the use of GGBFS.

The Prediction of Durability Performance for Chloride Ingress in Fly Ash Concrete by Artificial Neural Network Algorithm (인공 신경망 알고리즘을 활용한 플라이애시 콘크리트의 염해 내구성능 예측)

  • Kwon, Seung-Jun;Yoon, Yong-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.127-134
    • /
    • 2022
  • In this study, RCPTs (Rapid Chloride Penetration Test) were performed for fly ash concrete with curing age of 4 ~ 6 years. The concrete mixtures were prepared with 3 levels of water to binder ratio (0.37, 0.42, and 0.47) and 2 levels of substitution ratio of fly ash (0 and 30%), and the improved passed charges of chloride ion behavior were quantitatively analyzed. Additionally, the results were trained through the univariate time series models consisted of GRU (Gated Recurrent Unit) algorithm and those from the models were evaluated. As the result of the RCPT, fly ash concrete showed the reduced passed charges with period and an more improved resistance to chloride penetration than OPC concrete. At the final evaluation period (6 years), fly ash concrete showed 'Very low' grade in all W/B (water to binder) ratio, however OPC concrete showed 'Moderate' grade in the condition with the highest W/B ratio (0.47). The adopted algorithm of GRU for this study can analyze time series data and has the advantage like operation efficiency. The deep learning model with 4 hidden layers was designed, and it provided a reasonable prediction results of passed charge. The deep learning model from this study has a limitation of single consideration of a univariate time series characteristic, but it is in the developing process of providing various characteristics of concrete like strength and diffusion coefficient through additional studies.

The Effect of Recycled Aggregate Produced by the New Crushing Device with Multi-Turn Wings and Guide Plate on the Mechanical Properties and Carbonation Resistance of Concrete (다중 회전 날개 및 가이드 판 설치 파쇄장치를 통해 제작된 순환골재가 콘크리트의 역학적 특성 및 탄산화 저항성에 미치는 영향)

  • Cho, Sung-Kwang;Kim, Gyu-Yong;Eu, Ha-Min;Kim, Yong-Rae;Lee, Chul-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.135-142
    • /
    • 2021
  • In this work, multi-turn wings and guide plates are installed on recycled aggregate crushing devices to improve existing low recycled aggregate quality. Simulation analysis to evaluate the crushing efficiency of the new device shows enhanced crushing efficiency since the installation of guide plates shreds most of the inputs inside the crushing drum, and the multi-turn wings and guide plates induce rebound and circulation of the aggregate. Through this, the new device was found to be more economical and efficient than the existing recycled aggregate crushing device. Also, the amount of cement paste and mortar attached to the surface of the aggregate was smaller than that of the existing recycled aggregate, and it was found that the mechanical properties and elastic modulus deterioration were reduced. However, the carbonation resistance of concrete was not improved to the level of natural aggregates due to the remaining tiny cement paste and mortar on the surface of the new recycled aggregate. Therefore, it is deemed necessary to further research and experiment such as device improvement or binder development to reduce durability degradation of concrete mixed with new recycled aggregate.

Analysis of Failure Behavior of FRP Rebar Reinforced Concrete Slab based on FRP Reinforced Ratio (FRP 보강근비에 따른 FRP 보강 콘크리트 슬래브의 파괴거동 분석)

  • Jang, Nag-Seop;Kim, Young-Hwan;Oh, Hong-Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.173-181
    • /
    • 2021
  • Reinforced concrete structures are exposed to various environments, resulting in reinforcement corrosion due to moisture and ions penetration. Reinforced concrete corrosion causes a decrease in the durability performance of reinforced concrete structures. One solution to mitigate such issues is using FRP rebars, which offer several advantages such as high tensile strength, corrosion resistance, and light-weight than conventional rebars, in reinforced concrete instead of conventional steel rebars. The FRP rebar used should be examined at the limit state because FRP reinforced concrete has linear behavior until its fracture and can generate excessive deflection due to the low elastic modulus. It should be considered while designing FRP reinforced concrete for flexure. In the ultimate limit state, the flexural strength of FRP reinforced concrete as per ACI 440.1R is significantly lower than the flexural strength by applying both the environmental reduction and strength reduction factors accounting for the material uncertainty of FRP rebar. Therefore, in this study, the experimental results were compared with the deflection of the proposed effective moment of inertia referring to the local and international standards. The experimental results of GFRP and BFRP reinforced concrete were compared with the flexural strength as determined by ACI 440.1R and Fib bulletin 40. The flexural strength obtained by the experimental results was more similar to that obtained by Fib bulletin 40 than ACI 440.1R. The flexural strength of ACI 440.1R was conservatively evaluated in the tension-controlled section.

Review of Adequacy for On-Site Application of Concrete Freeze-Thaw Damage Evaluation Method Using Surface Rebound Value (표면반발경도 활용 콘크리트 동해손상 판정법의 현장 적용 적정성 검토)

  • Ji-Sun, Park;Jong-Suk, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.539-546
    • /
    • 2022
  • The current 「Detailed guidelines for the safety and maintenance of facilities (performance Evaluation)」 prescribes that the durability of surface concrete is evaluated by comparing the measuring the surface rebound value between sound parts and non-sound parts that have surface damage due to winter rain or leakage on concrete. However, this evaluation method was proposed by analyzing the correlation with an experimental DB obtained under freeze-thaw simulation promoting the environment without reviewing on-site applicability. Therefore, this study reviewed on-site application appropriateness of the concrete freeze-thaw damage evaluation method for the 21 concrete bridges in Korea. From the results, it was clearly confirmed that there was a difference in the surface rebound value between the sound part and the non-sound on the concrete surface; the current evaluation method is considered appropriate for application at the site. In addition, the necessity of adding a specific method and a measurement position of surface rebound value were also analyzed, and the effectiveness of the current evaluation method was also analyzed when targeting the entire concrete bridge, not the evaluation of some sections.