Acknowledgement
이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. NRF-2021R1A6A3A01086622).
References
- Metha, P. K., and Monteiro, P. M. (1993), Concrete: structure, properties, and materials, 2nd edition, prentice Hall, New-Jersey, 113-171.
- Broomfield, J. P. (1997), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, E&FN, London. 1-15.
- Oh, K. S., Park, K. T., and Kwon, S. J. (2016), Evaluation of Anti-Corrosion Performance of FRP Hybrid Bar with Notch in GGBFS Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(4), 51-58. https://doi.org/10.11112/JKSMI.2016.20.4.051
- Moon, H. Y., Kim, H. S., and Lee, S. T. (2002), Examination on the Deterioration of Concrete due to Seawater Attack, Journal of the Korean Society of Civil Engineers, 22(1A), 171-179.
- Kirkpatrick, T. J., Weyers, R. E., Anderson-Cook, C. M., and Sprinkel, M. M. (2002), Probabilistic Model for the Chloride-induced Corrosion Service Life of Bridge Decks, Cement and Concrete Research, 32(12), 1943-1960. https://doi.org/10.1016/S0008-8846(02)00905-5
- Lee, S. K., and Zielske, J. (2014), An FHWA Special Study: Post-Tensioning Tendon Grout Chloride Thresholds(FHWA-HRT-14-039), Federal Highway Administration, McLean, 7-20.
- Nath, P., and Sarker, P. (2011), Effect of Fly Ash on the Durability Properties of High Strength Concrete, Procedia Engineering, 14, 1149-1156. https://doi.org/10.1016/j.proeng.2011.07.144
- Jau, W. C., and Tsay, D. S. (1998), A Study of The Basic Engineering Properties of Slag Cement Concrete and Its Resistance to Seawater Corrosion, Cement and Concrete Research, 28(10), 1363-1371. https://doi.org/10.1016/S0008-8846(98)00117-3
- Thamoas, M. D. A., and Bamforth, P. B. (1999), Modelling Chloride Diffusion in Concrete Effect of Fly Ash and Slag, Cement and Concrete Research, 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
- KS L 5405. (2016), Fly Ash, Korea Standard Service Network, Republic of Korea, 1-8.
- Bilodeau, A., Malhotra, V. M., and Golden, D. M. (1998), Mechanical properties and durability of structural lightweight concrete incorporating high-volumes of fly ash, ACI International, 178, 449-474.
- Borah, M. M., Dey, A., and Sil, A. (2020), Service life assessment of chloride affected bridge located in coastal region of India considering variation in the inherent structural parameters, Structures, 23, 191-203. https://doi.org/10.1016/j.istruc.2019.09.020
- Yoon, Y. S., Kim, T. H., and Kwon, S. J. (2020), Evaluation of Chloride Diffusion Behavior and Analysis of Probabilistic Service Life in Long Term Aged GGBFS Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 24(3), 47-56. https://doi.org/10.11112/JKSMI.2020.24.3.47
- Thomas, M. D, A., and Bentz, E. C. (2002), Computer Program for Predicting the Service Life and Life-cycle Costs of Reinforced Concrete Exposed to Chlorides(Life365 Manual), SFA, Lovettsville.
- KCI. (2021), KDS 14 20 40-Durability Design Standard for Concrete Structure, Korea Concrete Institute, Seoul, 652-653.
- ACI. (2017), ACI 365.1R-17-Report on Service Life Prediction, ACI Committee 365, American Concrete Institute, Farmington Hills, 42-45.
- Yeh, I. C. (1998), Modeling of strength of high-performance concrete using artificial neural networks, Cement and Concrete research, 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Kim, I. S., Lee, J. H., Yang, D. S., and Park, S. K. (2002), Prediction on Mix Proportion Factor and Strength of Concrete Using Neural Network, Journal of the Korean Concrete Institute, 14(4), 457-466. https://doi.org/10.4334/JKCI.2002.14.4.457
- Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., and Muharemagic, E. (2015), Deep learning applications and challenges in big data analytics. Journal of big data, 2(1), 1-21. https://doi.org/10.1186/s40537-014-0007-7
- Chithra, S., Kumar, S. S., Chinnaraju, K., and Ashmita, F. A. (2016), A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks, Construction and Building Materials, 114, 528-535. https://doi.org/10.1016/j.conbuildmat.2016.03.214
- Lee, S. C. (2003), Prediction of concrete strength using artificial neural networks, Engineering structures, 25(7), 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X
- Jeong, D. H. (2020), A study on prediction of concrete carbonation using deep learning, Master's thesis, Ansan: Hanyang University, Department of Architectural Engineering.
- Yoon, Y. S., and Kwon, S. J. (2020), Evaluation of Chloride Behavior and Service Life in Long-Term Aged FA Concrete through Probabilistic Analysis, Journal of the Korean Recycled Construction Resources Institute, 8(3), 276-285. https://doi.org/10.14190/JRCR.2020.8.3.276
- Berke N. S., and Hicks, M. C. (1994), Predicting Chloride Profiles in Concrete, CORROSION, 50(3), 234-239. https://doi.org/10.5006/1.3293515
- ASTM C 1202. (2005), Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, American Society for Testing and Materials.
- KS F 2405. (2015), Standard Test Method for Compressive Strength of Concrete, KSSN, 1-3.
- Jeon, G. Y., Park, J. H., Jung, J. W. and Yoon, H. C. (2021), Structural Response Estimation Using Gated Recurrent Unit, Journal of the Korean Society of Hazard Mitigation, 21(3), 171-179.