• Title/Summary/Keyword: 내구성 실험

Search Result 1,159, Processing Time 0.03 seconds

An Experimental Study on the Improvement of Early Strength and Chloride Attack Resistance for Marine Concrete (해양용콘크리트의 초기강도 및 내염해 저항성 향상에 관한 실험적 연구)

  • Lee, Keon-Ho;Kim, Jong-Back;Bae, Jun-Young;Seo, Shin-Seok;Jo, Sung-Hyun;Roh, Hyeon-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.661-664
    • /
    • 2008
  • The structure which is located in special surroundings like ocean-environment is physically and chemically eroded by seawater or salt damage, and then concrete-structure becomes deteriorated by iron corrosion and swelling pressure which leads to remarkably decline durability due to cracks and exploitation. As a measure against salt damage, it is actively being examined to use the blended cement that controls salt damage and fix chloride in the process of hydration. In this study, therefore, to examine the property of marine concrete added admixture, marine concrete is manufactured by adding high-strength admixture(omega2000) by 0, 5, 10, and 15% to low heat-blended cement. Then it shows that the compressive strength of manufactured marine cement tends to increase and chloride penetration resistance improves.

  • PDF

A Study on the Development of Polymer-Modified Mortars Using Styrene-Butyl Acrylate Latexes (St/BA의 모노머 비에 따른 폴리머 시멘트 모르타르 개발에 관한 연구)

  • Hyung, Won-Gil;Mun, Kyung-Ju;Song, Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.785-791
    • /
    • 2006
  • The purpose of this study is to clarify the effect of the monomer ratio on properties of the polymer-modified mortars based on styrene and butyl acrylate latexes, and to obtain basic data necessary to develop appropriate latexes for cement modifiers. This paper deals with the effects of monomer ratio on the typical properties of the polymer-modified mortars with styrene and butyl acrylate latexes. The polymer-modified mortars using the styrene and butyl acrylate latexes polymerized with various monomer ratios are prepared with different polymer-cement ratios, and tested for the particle size of polymer latexes, air contents, water-cement ratios, flexural and compressive strengths, water absorption, and chloride-ion penetration. From the test results, the polymer-modified mortars using styrene and butyl acrylate latexes with the mix proportions of synthesis having monomer ratios of 50:50 to 60:40 for the appropriate mix proportions can be recommended for practical applications. Their basic properties are greatly affected by the polymer-cement ratio rather than the monomer ratio, and are improved over un-modified mortar.

Evaluation of Structural Performance of Precast Modular Pier Cap (프리캐스트 모듈러 피어캡의 구조성능 평가)

  • Kim, Dong Wook;Shim, Chang Su
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.55-63
    • /
    • 2015
  • Prefabrication technologies are making bridge construction safer and less disruptive to the environment and traveling public, making bridge designs more constructible and, improving the quality and durability by shifting site work to a more controllable environment. Modular bridge substructures with concrete-filled steel tube (CFT) piers and composite pier caps were suggested to realize accelerated bridge construction. The precast segmental pier cap consists of a composite pier table and precast prestressed segments on the table. The pier table has embedded steel section to mitigate stress concentration at the connection by small tubes. Each bridge pier has four or six CFT columns which connect to the pier cap. Shear strength of the pier cap was obtained by extending vertical reinforcing bars from the table to the precast segment. Transverse prestressing was introduced to control tensile stresses by service loadings. Structural performance of the proposed modular system was evaluated by static tests. Design requirements of the composite pier cap were satisfied by continuous reinforcing bars and prestressing tendons. Standardized modular substructures can be effectively utilized for the fast replacement or construction of bridges.

An Experimental Study on Permeability in Elevation of Porous Concrete Using Unsaturated Polyester Resin (불포화 폴리에스터수지를 이용한 투수 콘크리트의 투수성 향상에 관한 실험적 연구)

  • Lho, Byeong-Cheol;Choi, Kyu-Hyung;Kim, Jeong-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.163-169
    • /
    • 2007
  • This study is focused on the proper mixture design of materials for the porous concrete with unsaturated polyester resin. The materials used in the mixture include the single-grade aggregates, unsaturated polyester resin as binder, and calcium carbonate as a filler. An experimental procedure has been carried out to select the best combination of the materials that satisfy both the required permeability and compressive strength. Various kinds of gravel size, the ratio of binder, and F/B ratios are tried to get proper mixture, and the permeability coefficient and compressive strength have been measured to find out the best combination of materials based on the proper Korean Standards. A promix design satisfied the standards of rainfall runoff reduction system with $3.5{\times}10^{-1}$ (cm/sec) of permeability, 34 % of porosity, 11 MPa of compressive strength can be obtained.

Design Optimization Techniques for the SSD Controller (SSD 컨트롤러 최적 설계 기법)

  • Yi, Doo-Jin;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.8
    • /
    • pp.45-52
    • /
    • 2011
  • Flash memory is becoming widely prevalent in various area due to high performance, non-volatile features, low power, and robust durability. As price-per-bit is decreased, NAND flash based SSDs (Solid State Disk) have been attracting attention as the next generation storage device, which can replace HDDs (Hard Disk Drive) which have mechanical properties. Especially for the single package SSD, if channel number or FIFO buffer size per channel increases to improve performance, the size of a controller and I/O pin count will increase linearly with channel numbers and form factor will be affected. We propose a novel technique which can minimize form factor by optimizing the number of NAND flash channels and the size of interface FIFO buffer in the SSD. For SSD with 10 channel and double buffer, the experimental results show that buffer block size can be reduced about 73% without performance degradation and total size of a controller can be reduced about 40% because control block per channel and I/O pin count decrease according to decrease channel number.

Composition Survey and Analysis of Non-Pt Oxygen Reduction Catalysts for Proton Exchange Membrane Fuel Cells (고체 고분자 연료전지용 비백금계 산소환원촉매 조성 조사 및 분석)

  • Kwon, Kyung-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.12-18
    • /
    • 2012
  • The prohibitively high cost of Pt catalyst might be the biggest barrier for the commercialization of proton exchange membrane fuel cells (PEMFC) of which wide application is expected. Worldwide research efforts for the development of alternative to Pt oxygen reduction reaction (ORR) catalyst are made recently. One of the important considerations in the catalyst development is durability issue as well as economic aspect. From this point of view, platinum group metals (PGM) except Pt can be a candidate for replacing Pt catalyst because the material properties and the catalytic activity of PGM are expected to be similar to Pt. In contrast to Ir, Rh and Os to which not so much attention has been paid as an ORR catalyst, Pd that is most similar to Pt in terms of material properties and catalytic activity and Ru that is in the form of chalcogenide have been studied intensively. Activity comparison between non-Pt and Pt oxygen reduction catalysts by half cell test using RDE (rotating disk electrode) or PEMFC MEA (membrane electrode assembly) operation indicates that Pd-based catalysts show the most similar activity to Pt. In this paper we analyze the composition of PGM ORR catalyst in literature to promote the development of non-Pt ORR catalyst.

Effect of Isocyanate Group on the Physical Properties of Hydrogel Contact Lenses Containing Silane (실란을 포함한 친수성 콘택트렌즈의 물리적 특성에 대한 Isocyanate Group의 영향)

  • Sung, A-Young;Cho, Seon-Ahr;Kim, Tae-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.597-602
    • /
    • 2012
  • The copolymerization of triacetoxyvinylsilane, EGDMA (ethylene glycol dimethacrylate as a cross-linker), HEMA (2-hydroxyethyl methacrylate), MMA (methyl methacrylate), MA (methacrylic acid) was performed in the presence of AIBN (2,2'-azobisisobutyronitrile) as an initiator. Measurement of the physical properties of the resulting copolymers showed that water content, refractive index, visible ray transmittance, and tensile strength were in the range of 35.63~32.44%, 1.4382~1.4480, 89.0~92.5% and 0.346~0.674 kgf, respectively. The values of tensile strength of copolymers-containing hexamethylene diisocyanate were higher than those of the copolymers containing triacetoxyvinylsilane. From the results we came to the conclusion that the produced copolymers are suitable for the application of ophthalmic contact lens with high tensile strength, wettability and duraility.

A Presevatived Study On Accelerated Aging Of The System Of Mass-Deacidification In Domestic (인공열화에 의한 국산 대량탈산시스템의 보존성 연구)

  • Shin, Jong-Soon
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.1 no.1
    • /
    • pp.177-200
    • /
    • 2001
  • The causes which affects the deterioation of paper arc paper structure, papermaking process, temperature and rative humidity, light and biological agents. Paper made from cllulose fibers by the wood and the nonwood, This paper structure is further hydrolyzed by acidic additive such as the sizing agents during the manufacturing process. These additives leave residual acids in the paper, which break the cellulose clown to simper molecules. The results is weak paper and bas caused most of the damage to book. This study was carried out to investigate the presevation and the deacidification for the permanenece by the book. The deacidification and the chemical agents aims to nutralized the aicd in paper and add alkaline to it as a buffer to withstand future acid attacks. By applying the system to the acid paper with a pH of 4.5 neutralized a pH of 8.5. The expected of alkaline reserved paper extend about 2times and 3times than acidic paper.

Liquid Phase Hydrogenation of Croton Aldehyde with Nickel Catalysts (니켈촉매에 의한 크로톤 알데히드의 액상 수소첨가반응)

  • Lee, Hak Sung;Park, Young Hae;Kim, Yong Sup
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.509-516
    • /
    • 1994
  • Liquid phase hydrogenation come into use for the removal process of unsaturated hydrocarbon such as croton aldehyde. The croton aldehyde is generated in a very small amount as by-product in the ethanol production, and it is converted into n-butanol through hydrogenation. Liquid phase hydrogenation is low energy consumption process as compared with gas phase hydrogenation. The nickel catalyst is selected with respect to the economic aspect such as durability and cost. The analysis of the conversion were performed by method of the PMT(permangante time) test. The PMT was sharply decreased as the initial concentrations of croton aldehyde in the ethanol solution were increased. The hydrogenation of croton aldehyde to n-butanol was carried out in sequence after the saturation of the carbon-carbon double bond. The formation of both butyraldehyde and n-butanol followed zero order kinetics. Within expermental conditions the PMT gets longer as reaction temperature goes higer and as LHSV becomes slower, while the reaction pressure has almost no relation with PMT.

  • PDF

Design and Fabrication of a Nonglass Solar Vacuum Collector (비유리식 진공관형 태양열 집열기의 설계 및 제작)

  • Oh, Seung-Jin;Hyun, Jun-Ho;Kim, Nam-Jin;Lee, Heon-Ju;Lee, Yoon-Jun;Chun, Won-Gee
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2007.11a
    • /
    • pp.181-186
    • /
    • 2007
  • 본 논문은 현재 국내 외적으로 널리 공급되고 있는 유리식(glass) 진공관형 태양열 집열기를 대체할 수 있는 비유리식(non-glass) 진공관형 태양열 집열기의 설계 및 제작에 관한 실험적 내용을 소개하고 있다. 비유리식 진공관형 태양열 집열기는 유리식에 비해 그 내구성이 탁월할 뿐 아니라 적용성도 뛰어나지만 비유리식 집열기는 유리식 집열기와 달리 외부공기 입자의 진공관 내부로의 확산을 억제하거나 그 내부의 진공도 유지를 위해 특수 설계를 하여야 하며 아울러 소재의 특성을 최대한 살릴 수 있는 응용 기술의 개발을 필요로 한다. 이를 위하여 진공관 내부의 일정한 진공도 유지를 위해 집열기와 별도로 설치된 Vacuum Chamber를 진공관과 튜브(vacuum connector)로 연결하여 진공관 내의 outgasing이 가능하도록 할 수도 있으며, 진공관 외피에 공기의 침투를 억제하기 위한 gas barrier coating을 고려할 수도 있다. 본 논문에서 소개하는 비유리식(non-glass) 진공관형 태양열 집열기는 기계, 화공, 재료 등 다양한 분야의 원천 기술을 복합적으로 적용한 것으로 기존의 유리식에 비해 설계 및 제작에 있어서 다소 복잡한 양상을 띠고 있다.

  • PDF