• Title/Summary/Keyword: 내구성설계기준

Search Result 138, Processing Time 0.03 seconds

Fatigue Behavior of Steel-Concrete Composite Bridge Deck with Perfobond Rib Shear Connector (유공판재형 전단연결재를 갖는 강-콘크리트 합성바닥판의 피로거동에 관한 연구)

  • Kyung, Kab Soo;Lee, Seung Yong;Jeong, Youn Ju;Kwon, Soon Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.71-80
    • /
    • 2010
  • Bridge deck is directly influenced by environment and vehicle load, it is easily damaged so that it requires an appropriate repair and retrofit. Therefore, developing a bridge deck with high durability is necessary in order to minimize the maintenance of bridge deck and use it to its design life. In this study, static test was carried out to evaluate a fatigue capacity of steel-concrete composite deck, which was newly developed by supplementing problems of existing reinforced concrete deck. Based on results from the static test, fatigue load was decided, and fatigue test was conducted under the constant amplitude repeated load. From the fatigue tests, the S-N curve regarding principle structural details of composite deck was made, and characteristics of fatigue behavior was estimated by comparing and evaluating it with fatigue design criteria. In addition, fatigue design guideline was presented. As a result, it is found that each structural details of composite deck proposed by this study, such as upper flange of corrugated steel plate and middle section of it, shear connector and lower flange of corrugated steel plate, is satisfying the fatigue strength.

The feasibility study for reclaimed wastewater reuse in Saek-dal of Jeju island (제주 색달하수처리장 방류수 재이용 타당성 평가)

  • Lee, Kwang-Ya;Kim, Hae-Do;Joo, Jin-Hun;Kim, Young-Jin;Kang, Su-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.439-439
    • /
    • 2012
  • 본 연구의 목적은 색달하수처리장 방류수를 농업용수 및 조경용수 등으로 활용하기 위해 하수 처리수 재이용 사업 타당성을 분석하고자 한다. 색달하수처리장 하수재이용사업은 제주도의 지하수자원 보존과 수자원 이용의 고도화 및 방류수 재이용을 통한 갈수기 농업용수 보급으로 물자원(지하수)을 절약하고자 색달하수처리장을 대상으로 하수처리수를 농업용수로 공급하는 사업이다. 대상지역은 서귀포시 예래동에 위치하고 있으며, 중문관광단지가 소재한 마을로 제주관광의 중심지이다. 서귀포시의 총 인구는 153,797명이며 하수도 보급률은 77.7%이다('10 제주특별자치도 통계연보). 색달하수처리장이 위치한 예래동의 농지면적이 1,122ha이며, 밭(772.6)과 과수원(280.2) 등 제주도의 전형적인 농촌마을이다. 대상지역의 주요작물은 감귤, 무, 마늘, 양배추 등이 많이 재배된다. 제주도는 연평균 강수량이 1,832.6mm로 전국평균 1,274 mm 보다 많은 편이며, 월별 강수량은 6~8월까지 3개월 동안 연 강우량의 44%정도가 내려 여름 장마철에 집중되는 것으로 나타났다. 대상지구의 필요수량은 농업생산정비 계획설계기준에 제시된 방법을 이용하여 산정하였다. 지구내 재이용수를 공급할 관정 4개소의 총 설계 채수량은 $2,916m^3/day$, 급수면적은 125.0ha이며, 10년한발(가뭄)시 안정적인 농업용수 공급을 위하여 $4,964m^3/day$(농업용수 $3,834m^3/day$, 조경용수 $1,130m^3/day$)이 필요하다. 하수처리수 재이용을 위한 처리시설의 연간 유지관리비는 인건비, 전력비, 시설물 내구연한을 고려하여 적용 하였으며, 상수도 생산비 절감 비용과 하수재이용수 생산단가를 통한 단위 편익을 산정하면 401.5원/$m^3$ 이다. 연차별 수익으로 산정하여 비용 편익 비율(B/C Ratio)을 나타내면 1.22로 나타났다. 본 연구의 결과로부터, 대상지구의 수자원여건, 입지여건, 장래 수요, 등을 고려할 때, 제주 색달 하수처리장의 하수처리수의 농업용수재이용 사업은 타당성이 매우 높다고 할 수 있다. 그리고 특히 이 지역은 관광단지의 조경용수 수요(중문골프장 등)가 있어 용수의 유료공급이 가능하고 이를 유지관리비로 충당할 수 있어 타지역에 비해 사업의 경제성과 환경보전성이 매우 크다.

  • PDF

A Study on the Properties and Mix Design of Eco-friendly Concrete Bricks Using Recycled Fine Aggregates (순환잔골재를 활용한 친환경 콘크리트 벽돌의 물성 및 배합설계 연구)

  • Choi, Hyungkook;Yang, Sungchul;Son, Jaeho;Lee, Seunghyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.5
    • /
    • pp.32-40
    • /
    • 2024
  • In the construction industry, lack of reliability in the quality of recycled aggregates, harmful substance problems, and negative consumer perceptions limit the expansion of the use of recycled aggregates. In this respect, existing studies mainly focus on the use of recycled coarse aggregates in concrete in consideration of durability. On the other hand, in the case of recycled fine aggregates, not only are there insufficient cases applied to major structures, but the scope of application is very limited due to lack of awareness. Therefore, the main purpose of this study is to present the possibility of their application in bearing and non-bearing wall structures through physical characteristics experiments of concrete bricks for masonry according to various mixing ratios of recycled fine aggregates and cement amounts. To this end, the compressive strength and absorption rate of concrete bricks were measured focusing on the mixing ratio of the recycled fine aggregate and the crushed fine aggregate and the amount of cement. As a result, it is found that it is possible to use 100% of recycled fine aggregate for 200kg/m3 of cement or 25% of crushed fine aggregate mixed with 75% of recycled fine aggregate for the same amount of cement to achieve the compressive strength of 13MPa, witch is one of the quality requirements for concrete bricks for bearing walls. In addition, it is found that to meet the strength of 8MPa, one of the quality requirements for non-bearing walls, it is sufficient to use 100% of the recycled fine aggregate for 100kg/m3 of cement. Through the absorption rate tests, it is also confirmed that the absorption rate of the concrete brick is 13% or less by meeting the required performance criteria. This means that even if recycled fine aggregate is used in the manufacture of concrete bricks, the quality standards required by KS F 4004 (concrete bricks) can be sufficiently met.

An Experimental Study and Value Analysis for Performance Assessment of the Embo-thane Membrane Waterproofing Method (엘보탄도막방수공법의 성능평가를 위한실험적 연구 및 VE분석)

  • Yoon, Cha-Woong;Lee, Seung-Soo;Kim, Sang-Rok;Seo, Jong-Won
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.5
    • /
    • pp.123-134
    • /
    • 2009
  • Since 1970s, urethane waterproofing method is broadly used in rooftops, underground spaces, and sports stadium for its outstanding ultraviolet blockage, watertightness, and elasticity. However, development of slippage-resistance and endurance, improvement of function considering convenience and visually pleasing of users, urethane waterproofing method is necessary, since rooftops and underground spaces have slippage and external force risks. Therefore, many improved waterproofing methods are being developed and, recently, embo-thane waterproofing method, which applies embo-spray coating system, has been developed. This paper explains exposure, nonexposure, and floor-material of embo-thane waterproofing method, and then perform experimental study for comparison with urethane waterproofing method about tensile strength, coefficient of expansion, performance of bond, anti-abrasion, and slippage-resistance. In addition, the performance index was presented for the superiority of embo-thane waterproofing method compared to urethane by setting up evaluation criteria considering not only physical performance but also design side of embo-thane waterproofing method, and Value Analysis applying AHP. Also for an assessment considering uncertain result, Monte Carlo Simulation Method was used to operate reliability analysis through statistic approach method.

A Study on the Effect of the Changes of Play Facilities on Rules Changes - Focusing on the City of Seoul - (관련법규 변천이 아파트단지 내 어린이놀이터 변화에 미치는 영향 연구 - 서울시 소재 현장을 중심으로 -)

  • Kim, Dong-Chan;Suh, Joo-Hwan;Park, You-Jeong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.2
    • /
    • pp.26-35
    • /
    • 2009
  • This study is an analysis of the design changes of children's play facilities and the related rules and regulations which causes these changes. Accordingly, it is noticed that a site's change of design by legislation and by yearly alternation influences playground design. First, after revising the provisions for the distance from roads and parking lots, the constructing of safety fences between play facilities and the using of durable materials, alterations of the designs have been made a reality. Second, the design changes after the period of regulation transitions were caused by provisions related to the shelter of evergreens and conditions of the sun. Third, the changes of the playgrounds were related to the substitution of exercise facilities for the local residents and in carrying out a hygiene exam more than twice a year. Because a lack of regulatory standards for the design of playgrounds resulted in compliance based on individual interpretation and because a substitution of exercise facilities is part of the way to alleviate these regulations, the conditions of the site under investigation could be projeced. By such changes of regulations and analysis of alterations of playground design, programs for improvement were suggested. It turned out that the composition of the concrete standard in conformity with regulations required closer observance. Moreover, design standards for children's playgrounds are needed, such as the provision of variation in external appearance, the creation of more flexible layouts and the outlining of spaces by themes.

Strength Characteristics of Recycled Concrete by Recycled Aggregate in Incheon Area Waste Concrete (인천지역의 콘크리트 폐기물을 재생골재로 활용한 재생콘크리트의 강도특성)

  • Jang, Jea-Young;Jin, Jung-Hoon;Cho, Gyu-Tae;Nam, Young-Kug;Jeon, Chan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.197-208
    • /
    • 2003
  • This paper is to determine the possibility of re-using waste concrete from Incheon city area. The strength test was conducted with five aggregate compounds which was replaced a natural aggregate with recycled aggregate. After checking the physical characteristics of recycled aggregate compounds, the mix design of recycled concrete was conducted. For the relatively comparison between natural and recycled compounds, while the unit aggregate weight was changed, other conditions were fixed. The freezing and thawing test which included fly-ash and super-plastezer were performed to check the durability and workability when recycling waste concrete. In the physical characteristics of recycled aggregate, it was found that the specific gravity of recycled coarse aggregate and recycled fine aggregate satisfied the first grade of recycle specification(KS), and all compounds of recycled aggregate also satisfied the second grade of absorption specification, Especially up to the 50% substitution of recycled aggregate is equal to or a bit lower than that of convention aggregate. In comparison with conventional concrete, the recycled concrete is lower than maximum by 7% in compressive strength decreasing rate after freezing-thawing test. From now, although most of recycled concrete was used to the building lot, subgrade, asphalt admixture, through the result. It was proved that possibility of re-using recycled aggregate as the substructure of bridge, retaining wall, tunnel lining and concrete structure which is not attacked the drying shrinkage severely.

Calculation of Crack Width of the Top Flange of PSC Box Girder Bridge Considering Restraint Drying Shrinkage (구속 건조수축을 고려한 PSC BOX 거더교 상부플랜지 균열폭 산정)

  • Young-Ho Ku;Sang-Mook Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.30-37
    • /
    • 2023
  • The PSCB girder bridge is a closed cross-section in which the top and bottom flanges and the web are integrated, and the structural characteristics are generally different from the bridges in which the girder and the floor plate are separated, so a maintenance plan that reflects the characteristics of the PSCB girder bridge is required. As a result of analyzing damage types by collecting detailed safety diagnosis reports of highway PSCB girder bridges, most of the deterioration and damage occurring during use is concentrated on the top flange. In particular, cracks in the bridge direction on the underside of the top flange occurred in about 70 % of the PSCB girder bridges to be analyzed, and these cracks were judged to be caused by indirect loads such as heat of hydration and drying shrinkage rather than structural cracks caused by external loads. In order to improve durability and reduce maintenance costs of PSCB girder bridges in use, it is necessary to control restraint drying shrinkage cracks from the design stage. Therefore, in this paper, the cracks caused by drying shrinkage under restraint, which is the main cause of cracks under the flanges of the top part of the PSCB girder bridge, were directly calculated using the Gilbert Model, and the influencing factors such as the amount of reinforcing bars, diameter and spacing of reinforcing bars were analyzed. As a result of the analysis, it was found that the crack width caused by restraint drying shrinkage exceeded the allowable crack width of 0.2 mm for reinforcing bars with a reinforcing bar ratio of 0.01 or less based on the H16 reinforcing bar and a reinforcing bar with a diameter greater than H19 based on the reinforcing bar ratio of 0.01. Finally, based on the results of the crack width review, a method for controlling the crack width of the top flange of the PSCB girder bridge was proposed.

A Study on the Effect of Fire Heat on the Durability of Concrete Structures Repaired and Reinforced with Epoxy Resin (화열(火熱)이 에폭시수지로 보수·보강된 콘크리트 구조체의 내구성에 미치는 영향에 관한 연구)

  • Tai Kwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.138-145
    • /
    • 2023
  • Purpose: In accordance with the increase in the number of buildings repaired and reinforced following deterioration from when a fire occurs in a previously reinforced building, the impact on the structure after the fire is analyzed to establish standards for repair and reinforcement measures. Method: After curing for 28 days, the process was to measure the compressive strength and induce destruction through a compressor, repair and reinforce it with epoxy, and conduct a re-compressive strength test on some specimens after curing for 3 days to understand the degree of strength restoration. The rest of the repaired and reinforced specimens as well as the unrepaired and unreinforced specimens were then put into an oven and heated according to the temporal and temperate conditions listed below, and then the compressive strength was tested to estimate the impact of fire. Result: After reinforcing the yielded specimen with epoxy, the process was to then put it in an oven and heat it at different temperatures over time. It was found that there was a decrease in the strength of the reinforcement more than that of the actual specimen. Conclusion: Based on this, it was found that a building repaired and reinforced with epoxy resin is actually more dangerous than a general unrepaired building when it is damaged by fire, and thus, that it must be prepared for fire vulnerabilities.

Structural Behavior of the Reinforced Concrete Filled GFRP Tube (GFRP 보강 철근콘크리트 합성부재의 구조적 거동)

  • Lee, Seung-Sik;Joo, Hyung-Joong;Kang, In-Kyu;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.23 no.4
    • /
    • pp.44-51
    • /
    • 2010
  • Recently, to solve the problems associated with the neutralization and corrosion of reinforced concrete compression members, the structural configurations such as CFFT (Concrete Filled GFRP Tube) and RCFFT (Reinforced Concrete Filled GFRR Tube) have been developed and applied to main members of civil engineering structure. These members can increase structural performance in terms of structural stability, ductility as well as chemical resistance compared with conventional concrete structural members. Many researches in numerous institutions to predict the load carrying capacity of the concrete compression member strengthened with FRP materials have been conducted and they have been suggested an equation for the prediction of the load carrying capacity of the members. Through the review of the research results, it was found that their results are similar each other. Moreover, it was also found that the results are not directly applicable to our specimens since the results are largely depended upon the member configurations. Also, since the accurate design criteria for the RC members strengthened with FRP such as RCFFT have not been established properly, relevant theoretical and experimental investigations must be conducted for the application to the practical structures. In this study, structural behavior of RCFFT was evaluated through compressive and quasi-static flexural tests in order to formulate design criteria for the structural design. In addition, the RCFFT members were also investigated to examine their confinement effect and the equations capable of estimating the compressive ultimate strength and flexural stiffness of the RCFFT members were proposed.

Estimation of Application on the Site of SRC Method for the Ground Reinforcement in Marine Clay (해성점토층에서 SRC 지반보강에 관한 현장적용성 평가)

  • Lee, Seungjun;Lee, Seogyoung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.23-32
    • /
    • 2013
  • Currently, the west coast has focused on large-scale investment and development, such as harbor construction work and land reclamation projects, with soft ground grouting issues being the major concern. In addition, grouting for soft ground reinforcement is definitely considered that construction purpose, soil condition, construction situation, and construction costs. The SRC method, which is a high pressure injection method, can easily produce well-distributed strength regardless of soil characteristics and is environmentally friendly. Therefore in this study, the SRC method was applied to marine clay on the west coast where located Jeongok-ri, Seosin-myeon, Hwaseong-si, Gyeonggi-do, Korea as well as estimated of the ground reinforcement and the application on the site. The results of the application on the site by SRC method indicated age 28 day strength is $14,700{\sim}31,800kN/m^2$ which is satisfied the criterion of unconfined compressive strength that more than $5,333kN/m^2$. Therefore the result that the SRC method constructed marine clay on the west coast indicated the outstanding strength as well as excellent durability.