• Title/Summary/Keyword: 날개형상

Search Result 318, Processing Time 0.024 seconds

Design and Analysis of IPMC Actuator-driven ZNMF Pump for Air Flow Control of MAV's Wing (IPMC 작동기로 구동되는 초소형 비행체 날개의 공기흐름 조절용 ZNMF(zero-net-mass-flux) 펌프의 예비설계 및 해석)

  • Lee, Sang-Gi;Kim, Gwang-Jin;Park, Hun-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.22-30
    • /
    • 2006
  • In this paper, a systematic design method on an IPMC(ionic polymer-metal composite)-driven ZNMF(zero-net-mass-flux) pump is introduced for the flow control of an MAV's (micro air vehicle) wing. Since the IPMC is able to generate a large deformation under a low input voltage along with its ability to operate in air, and is easier to be manufactured in a small size, it is considered to be an ideal material of the actuating diaphragm. Through the numerical methods, an optimal shape of the IPMC diaphragm was found for maximizing the stroke volume. Based on the optimal IPMC diaphragm, a proto-type ZNMF pump with a slot, was designed. By using the flight speed of the MAV considered in this work, the driving frequencies(~ 40 Hz) of IPMC diaphragm, and the flow velocity through the pump's slot, the calculated non-dimensional frequency and the momentum coefficient ensure the feasibility of the designed ZNMF pump as a flow control device.

Design Improvement on Wind Turbine Blade of Medium Scale HAWT by Considering IEC 1400-1 Specification (IEC1400-1 규격을 고려한 중형 수평축 풍력발전용 회전날개의 설계개선 연구)

  • 공창덕;정석훈;장병섭;방조혁
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.29-37
    • /
    • 2000
  • Because the previous design procedure for the composite wind turbine blade structure using trial and error method takes long time, a improved design procedure by using the program based on classical laminate theory was proposed to reduce the inefficient element. According to the improved design procedure, limitation of strains, stresses and displacements specified by international standard specification IEC1400-1 for the composite wind turbine blade were applied to sizing the structural configuration by using the rule of mixture and the principal stress design technique with a simplified turbine blade. Structural safety for strength and buckling stability was confirmed by the developed analysis program based on the laminate theory to minimize the design procedure. After modifying the preliminary design result with additional structural components such as skin, foam sandwich and mounting joints, stresses, strains, displacements, natural frequency, buckling load and fatigue life were analyzed by the finite element method. Finally these results were confirmed by comparing with IEC1400-1 specification.

  • PDF

A Sizing Method for Solar Power Long Endurance UAVs (태양에너지 기반 장기체공 무인기 주요 치수 결정 방법론)

  • Lee, Ju-Ho;Lee, Chang-Gwan;Lim, Se-Sil;Kim, Keum-Seong;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.758-766
    • /
    • 2010
  • The design procedure of Solar Power UAVs is complicated because the configuration and required power for flight must be considered simultaneously as the supplied power is influenced by the wing area. In order to minimize trial and error for the Solar Power UAVs design, a systematic sizing method is proposed which can be used to determine whether a Solar Power UAV is feasible for a given mission, and to derive preliminary dimensional specification of it. The sizing procedure begins with initially assumed wing area because the power, lift, and drag of the wing are directly proportional to it. The assumed wing area and mission requirements are then used to determine step by step the airfoil specifications including lift coefficient and drag coefficient, weight, required power, and wing area. This procedure is iterated for each newly assumed wing area until the error between the assumed wing area and calculated wing area becomes significantly small enough. This sizing methodology was applied to previously developed Solar Power UAVs for validation purposes, resulting in good agreement. The methodology was also applied to determine the dimensions and specifications of the Solar Power High-Altitude Long-Endurance UAV.

A Potential-Based Panel Method for the Analysis of a 2-Dimensional Partially Cavitating Hydrofoil (양력판 이론에 의한 2차원 수중익의 부분 캐비티 문제 해석)

  • Chang-Sup,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.27-34
    • /
    • 1989
  • A potential-based panel method is formulated for the analysis of a partially cavitating 2-dimensional hydrofoil. The method employs dipoles and sources distributed on the foil surface to represent the lifting and cavity problems, respectively. The kinematic boundry condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the inner flow region of the foil. The dynamic boundary condition on the cavity surface is satisfied by requiring that the potential vary linearly, i.e., the velocity be constant. Green's theorem then results in a potential-based boundary value problem rather than a usual velocity-based formulation. With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with more improved accuracy than the zero-thickness hydrofoil theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. It was found that five iterations are necessary to obtain converged values, while only two iterations are sufficient for engineering purpose.

  • PDF

복합재료 선미익 항공기 날개 하중해석

  • Han, Chang-Hwan;Kim, Eung-Tai;Ahn, Seok-Min;Kim, Jin-Won
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.8-27
    • /
    • 2002
  • In this study, the load analysis of a composite canard aircraft is performed numerically. Excel visual basic program for PC is used to calculate aerodynamic coefficients, loads and moments etc.. The basic data required for the load analysis such as aircraft configuration and dimension, parts and its weight and coordinate etc. are obtained from Catia modeling, measurement or material density. Aircraft weight, center of gravity, inertia moment, structural design speeds, wing load distribution, forces and moments are evaluated by using these data. V-n diagram is also represented for selecting critical loads applied to the wing and fuselage. The V-n diagram is investigated to decide the flight envelope of canard aircraft for design speed VA, VC, VD and load factor +3.8G, -1.52G at maximum weight of 2,573 lbs and sea level. In the future, the results of the wing and fuselage load analysis is to represented by using selected critical loads.

  • PDF

The Strain Corrections for Accuracy Improvement to Predict Large Deformation of Wings (날개 대변형 예측의 정확성 향상을 위한 변형률 보정)

  • Lee, Hansol;Kim, In-Gul;Park, Sunghyun;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • The information about the deformations of high-aspect-ratio wings is needed for the real-time monitoring of structural responses. Wing deformation in flight can be predicted by using relationship between the curvatures and the strains on the wing skin. It is also necessary to consider geometric nonlinearity when the large deformation of wing is occurred. The strain distribution on fixed-end is complex in the chordwise direction because of the geometric shape of fixed-wings on fuselages. Hence, the wing displacement can be diversely predicted by the location of the strain sensing lines in the chordwise direction. We conducted a study about prediction method of displacements regardless of the chordwise strain sensing locations. To correct spanwise strains, the ratio of spanwise strain to chordwise strain, Poisson's ratio, and the ratio of the plate strain to the beam strain were used. The predicted displacements using the strain correction were consistent with those calculated by the FEA and verified through the bending testing.

Static Aeroelastic Analysis for Aircraft Wings using CFD/CST Coupling Methodology (전산유체/전산구조 연계 방법을 사용한 항공기날개의 정적 공탄성 해석)

  • Choi, Dong-Soo;Jun, Sang-Ook;Kim, Byung-Kon;Park, Soo-Hyun;Lee, Dong-Ho;Lee, Kyung-Tae;Jun, Seung-Moon;Cho, Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.287-294
    • /
    • 2007
  • A static aeroelastic analysis for supersonic aircraft wing equipped with external store under the wing lower surface is performed using computational fluid dynamics (CFD) and computational structural technology(CST) coupling methodology. Two mapping algorithms, which are the pressure mapping algorithm and the displacement mapping algorithm, are used for CFD/CST coupling. A three-dimensional unstructured Euler code and finite element analysis program are used to calculate the flow properties and the structural displacements, respectively. The coupling procedure is repeated in an iterative manner until a specified convergence criterion is satisfied. Static aeroelastic analysis for a typical supersonic flight wing is performed and final converged wing configuration is obtained after several iterations.

Aerodynamic Analysis of Various Winglets (윙렛 형상에 따른 공력 특성 해석)

  • Lee, Yung-Gyo;Kim, Cheol-Wan;Shim, Jae-Yeul
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.24-29
    • /
    • 2008
  • Aircraft fuel efficiency is one of main concerns to aircraft manufacturers and to aviation companies because jet fuel price has tripled in last ten years. One of simple and effective methods to increase fuel efficiency is to reduce aircraft induced drag by using of wingtip devices. Induced drag is closely related to the circulation distribution, which produces strong wingtip vortex behind the tip of a finite wing. Wingtip devices including winglets can be successfully applied to reduce induced drag by wingtip vortex mitigation. Winglet design, however, is very complicated process and has to consider many parameters including installation position, height, taper ratio, sweepback, airfoil, toe-out angle and cant angle of winglets. In current research, different shapes of winglets are compared in the view of vortex mitigation. Appropriately designed winglets are proved to mitigate wingtip vortex and to increase lift to drag ratio. Also, the results show that winglets are more efficient than wingtip extension. That is the reason B-747-400 and B-737-800 chose winglets instead of a span increase to increase payload and range. Drag polar comparison chart is presented to show that minimum drag is increased by viscous drag of winglet, but at high lift, total drag is reduced by induced drag decrease. So, winglets are more efficient for aircraft that cruises at a high lift condition, which generates very strong wingtip vortex.

  • PDF

Unsteady Thin Airfoil Theory of a Biomorphing Airfoil (생체형상가변 에어포일에 대한 비정상 박익이론)

  • Han, Cheol-Hui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.1-5
    • /
    • 2006
  • Birds and insect in nature morph their mean camberline shapes to obtain both lift and thrust simultaneously. Previous unsteady thin airfoil theories were derived mainly for a rigid flapping airfoil. An extended unsteady thin airfoil theory for a deformable airfoil is required to analyze the unsteady two-dimensional aerodynamic characteristics of a biomorphing wing. Theodorsen's approach is extended to calculate the unsteady aerodynamic characteristics of a biomorphing airfoil. The mean camberline of the airfoil is represented as a polynomial. The unsteady aerodynamic characteristics of the morphing airfoil are represented as noncirculatory and circulatory terms. Present theory can be applied to the unsteady aerodynamic analysis of a flapping biomorphing airfoil and the aeroelastic analysis of a morphing wing.

Development of KD- Propeller Series using a New Blade Section (새로운 날개단면을 이용한 KD-프로펠러 씨리즈 개발)

  • J.T. Lee;M.C. Kim;J.W. Ahn;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.52-68
    • /
    • 1991
  • A new propeller series is developed using the newly developed blade section(KH18 section) which behaves better cavitation characteristics and higher lift-drag ratio at wide range of angle-of-attack. The pitch and camber distributions are disigned in order to have the same radial and chordwise loading distribution with the selected circumferentially averaged wake input. Since the geometries of the series propeller, such as chord length, thickness, skew and rate distribations, are selected by regression of the recent full scale propeller geometric data, the performance prediction of a propeller at preliminary design stage can be mure realistic. Number of blades of the series propellers is 4 and the expanded blade area ratios are 0.3, 0.45, 0.6 and 0.75. Mean pitch ratios are selected as 0.5, 0.65, 0.8, 0.75 and 1.1 for each expanded area ratio. The new propeller series is composed of 20 propellers and is named as KD(KRISO-DAEWOO) propeller series. Propeller open water tests are performed at the experimental towing tank, and the cavitation observation tests and fluctuating pressure measurements are carried out at the cavitation tunnel of KRISO. $B_{P}-\delta$ curves, which can be used to select the optimum propeller diameter at the preliminary design stage, are derived from a regression analysis of the propeller often water test results. The KD-cavitation chart is derived from the cavitation observation test results by choosing the local maximum lift coefficient and the local cavitation number as parameters. The caviy extent of a propeller can be predicted more accurately by using the KD-cavitation chart at a preliminary design stage, since it is derived from the results of the cavitation observation tests in the selected ship's wake, whereas the existing cavitation charts, such as the Burrill's cavitation chart, are derived from the test results in uniform flow.

  • PDF