• Title/Summary/Keyword: 난방사용량

Search Result 53, Processing Time 0.026 seconds

Optimal Scheduling of Electric Water Heater Considering User Comfort For HEMS (편의성을 고려한 HEMS 전기온수기 최적스케줄링에 관한 연구)

  • Lee, Hyun-Seung;Shin, Je-Seok;Oh, Do-Eun;Lee, Jung-Il;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.501-502
    • /
    • 2015
  • 매년 증가되는 전력소비량에 대응하여 스마트그리드 기술을 기반으로 수용가 측의 에너지관리 중요성이 부각되고 있으며, 홈 에너지관리시스템(HEMS, Home Energy Management System)은 전기요금 절감과 효율적인 전력소비의 중요한 체계로써 기대되고 있다. 일반적으로, 가정에서 높은 전력소비를 가진 가전제품은 계절성 부하로 전기온수기, 냉/난방기를 일컫는다. 즉, 계절성 부하에 적절한 에너지관리, '최적부하 스케줄링'은 전기요금 절감과 직결되는 것을 의미한다. 본 논문은 Modified Branch-and-Bound 기법을 사용하여 사용자의 편의성을 고려한 전기온수기(EWH, Electric Water Heater)의 스케줄링을 실시하겠다. 여기서 사용자의 편의성이란, 외부의 온도변화 또는 습관에 따라 그 부하를 사용하는 것을 의미한다. 온수사용량, 수온 설정온도 변화의 편의성 제약조건을 고려하여 온수기를 효과적으로 운영하는 스케줄링을 실시한다. 이러한 편의성 내에서 온수기를 운영하며, 작동모드는 3가지(정지, 일반/급속가열) 모드가 존재하며, 다양한 요금제도에서의 스케줄링 결과를 절감된 전기요금으로 비교하겠다.

  • PDF

Economic Comparison of Medium Capacity and Multi Boiler System Applied to Military Officer Housing (군간부 숙소에 적용한 중용량 및 멀티보일러 시스템의 경제성 비교)

  • Kim, Min-yong;Kim, Young Il;Chung, Kwang Seop
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.81-88
    • /
    • 2015
  • In midst of electrical energy consumption on the rise due to the industrial development and the improved quality of living, medium capacity and multi boilers which use gas that is comparatively low cost and can be supplied reliably are simulated for energy consumption using the partial load data obtained from the experiment. Economic analysis that considers initial and operation costs is carried out based on the Annual equal payment method.

A Study on the Calculation of Thermal Consumption Unit of Apartment (공동주택의 열사용량원단위 산정에 관한 연구)

  • Lee, Wang-Je;Kang, Eun-Chul;Lee, Euy-Joon;Shin, U-Cheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.8
    • /
    • pp.388-393
    • /
    • 2014
  • Energy consumption unit in a building is classified according to uses of electricity, gas, and oil, and it has been studied steadily as a material for establishing policy standards for energy saving in buildings. Meanwhile, consumption unit in apartment house can be calculated differently according to its survey method and area standard. Therefore, with the necessity of reestablishing energy consumption unit, this study has researched thermal energy consumption, Supply dwelling area Exclusive dwelling area, completion year and housing type of 23,791 households of 31 complex in Daejeon. As a result, (1) there was about 20% difference between supply and exclusive dwelling areas. (2) On the basis of exclusive dwelling area, thermal energy consumption unit was calculated as $104.9kWh/m^2{\cdot}a$ in 2010, $104.6kWh/m^2{\cdot}a$ in 2011, and $107.7kWh/m^2{\cdot}a$ in 2012.

Multi-family Housing Complex Breakdown Structure for Decision Making on Rehabilitation (노후 공동주택 개선여부 의사결정을 위한 공동주택 분류체계 개발)

  • Hong, Tae-Hoon;Kim, Hyun-Joong;Koo, Choong-Wan;Park, Sung-Ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.101-109
    • /
    • 2011
  • As climate change is becoming the main issue, various efforts are focused on saving building energy consumption both at home and abroad. In particular, it is very important to save energy by maintenance, repair and rehabilitation of existing multi-family housing complex, because energy consumption in residential buildings is not only forming a great part of gross energy consumption in Korea but the number of deteriorated complexes is also sharply increasing. However, energy saving is not considered as a main factor in decision making on rehabilitation project. Also, any supporting tool is not appropriately prepared in existing process. As the first step for development of decision support system on rehabilitation, this paper developed a breakdown structure, which makes clusters of multi-family housing complexes. Decision tree, one of data mining methods, was used to make clusters based on the characteristics and energy consumption data of multi-family housing complexes. Energy saving and CO2 reduction will be maximized by considering energy consumption during rehabilitation process of multi-family housing complex, based on these results and following research.

Annual Energy Demand Analysis of a Lettuce Growing Plant Factory according to the Environmental Changes (상추 재배 식물공장의 환경변화에 따른 연중 에너지 요구량 분석)

  • Eun Jung Choi;Jaehyun Kim;Sang Min Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.278-284
    • /
    • 2023
  • Recently, a closed-type plant factory has been receiving attention as a advanced agricultural method. It has diverse advantages such as climate-independence, high productivity and stable year-round production. However, high energy cost caused by environmental control system is considered as a challenges of a closed-type plant factory. In order to reduce the energy cost, investigation about energy load which is directly connected to energy consumption needs to be conducted. In this study, energy load changes of a plant factory have been analytically analyzed according to the environmental changes. The target plant factory was a lettuce growing container farm. Firstly, the impact of photoperiod, set temperature and relative humidity change were examined. Under the climate condition of Daejeon in South Korea, increase of photoperiod and set temperature rose a yearly energy demand of a container farm. However, increase of set relative humidity decreased a yearly energy demand. Secondly, the climate environment effect was compared by investigating the energy demand under 9 different climate conditions. As a result, the difference between maximum and minimum value of the yearly energy demand showed 21.7%. Lastly, sensitivity analysis of each parameter (photoperiod, set temperature and relative humidity) has been suggested under 3 different climate conditions. The ratio of heating and cooling demand was varied depending on the climate, so the effect of each parameter became different.

Determination of Resonable Unit Snow Weight and Greatest Gust Speed for Design of Agricultural Structures and their Applications (농업시설의 설계하중 산정을 위한 적정 단위적설중량과 순간최대풍속의 결정 및 적용)

  • 손정익
    • Journal of Bio-Environment Control
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1994
  • Wind load or snow load, acting on agricultural structures is working more sensitive than any other load and therefore plays an important role in determination of design loads of agricultural structures. In this study, unit snow weight, greatest gust speed and depth of snow fall were analyzed and applied to determine the amount of frames. The unit snow weights were statistically classified and calculated in the basis of mean temperature and showed considerable differences between the unit snow weights at below and above -1$^{\circ}C$. Equations for estimating greatest gust speed with fastest wind speed were developed for inland and seaside districts. The calculated values from developed equations were little higher than those from the current equation in general. The difference between the depths of snow cover and snow fall, which shows the possibility of reduction of design loads under the adequate management. Design wind speed estimated by a modified equation suggested the amount of frames less than those by current one, and the depth of snow fall as a design snow depth suggested the amount of frames more than those of snow cover. Therefore, it is very important to select the adequate design values considering the characteristics of agricultural structures.

  • PDF

A Case Study for Energy Consumption Characteristics of High School Facilities in Seoul (서울지역 고등학교 건물의 에너지소비특성에 관한 사례분석)

  • Kim, Sung-Bum;Oh, Byung-Chil;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.61-69
    • /
    • 2016
  • In this study, we analyzed five-year(2011~2015) data for D high school in Seoul area to analyze energy consumption characteristics in high school. The results are summarized as follows. (1) In the result of comparison analysis about 2015 energy consumption by usage, based on primary energy, 18% of energy was consumed in cafeteria, and 82% was consumed in main building. In the case of main building, base and constant load excepting hot water supply in restroom took 40%, heating including freeze protection took 20%, hot water supply in restroom took 14%, and cooling took 8% in order. (2) In the 2015 total energy consumption in D high school based on primary energy, heating energy takes 28%. The range and limit of energy savings coming from the reinforcement of insulation and window performance could be estimated. (3) To introduce new & renewable energy system in high school, electricity-based system is suitable than heat-based system because usage of electric energy is larger than that of heat energy in high school. (4) Five-year energy consumption unit according to heating degree-day showed a linearly increasing trend, and the coefficient of determination(R2) was 0.9763, which means high correlation.

Analysis of Building Energy Reduction Effect based on the Green Wall Planting Foundation Type Using a Simulation Program (건물일체형 패널형 벽면녹화 식재기반 유형별 건물에너지 성능 분석)

  • Kim, Jeong-Ho;Kwon, Ki-Uk;Yoon, Yong-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.936-946
    • /
    • 2015
  • This study is aimed to analyze the reduction performance of building energy consumption according to planting base types of panel-type green walls which can be applied to existing buildings. The performance was compared to the general performance of green walls that have demonstrated effects of improving the thermal environment and reducing building energy consumption in urban areas. The number of planting base types was 4 in total, and simulations were conducted to analyze the thermal conductivity, thermal transmittance, and overall building energy consumption rate of each planting base type. The highest thermal conductivity by the planting base type was Case C (0.053W/mK), followed by Case B (0.1W/mK) and Case D (0.17W/mK). According to the results of energy simulation, the most significant reduction of cooling peak load per unit area was Case C (1.19%), followed by Case B (1.14%) and Case D (1.01%) when compared to Case A to which green wall was not applied; and the most significant reduction of heating peak load per unit area was estimated to be Case C (2.38%), followed by Case B (1.82%) and case D (1.50%) when compared to Case A. The amount of yearly cooling and heating energy use per unit area showed 3.04~3.22% of reduction rate. The amount of the 1st energy use showed 5,844 kWh/yr of decrease on average for other types when compared to Case A. The amount of yearly $CO_2$ emission showed 996kg of decrease on average when compared to Case A to which the green wall was not applied. According to the results of energy performance evaluation by planting location, the most efficient energy performance was eastward followed by westward, southward and northward. According to the results of energy performance evaluation by planting location by green wall ratio, it was found that as the ratio of green wall increased, the energy performance displayed better results, showing approx. double reduction rate in energy consumption at 100% of green wall ratio than the reduction rate at 20% to 80% of green wall ratio.

An Empirical Study of Hot Water Supply Patterns and Peak Time in Apartment Housing with District Heating System (공동주택의 급탕부하 지속시간 및 부하 패턴에 관한 실증연구)

  • Kim, Sung-Min;Chung, Kwang-Seop;Kim, Young-Il
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.435-443
    • /
    • 2012
  • The combination of space shortage and the high population density concentrated in urban areas of South Korea has resulted in the growth of large-scale high-rise residential complexes, naturally affecting water and hot water usage patterns as well. But the current designs for water and hot water supply in South Korea rely mostly on international design standards and data calculated on site due to the severe shortage of basic data in relation to actual use, which result in the frequent problem of the under-or over-design of water and hot water supply. The following study measures the hot water supplier's conditions and the user's heat usage to realize the amount of time required for hot water supply load generation and the pattern of actual use in order to create basic data for effective hot water supply facility design and maintenance.

Carbon Emission Model Development using Urban Planning Criteria - Focusing on the Case of Seoul (도시공간 계획요소를 이용한 이산화탄소 배출량 산정 모델 개발 - 서울시를 사례로)

  • Kim, In-Hyun;Oh, Kyu-Shik;Jung, Seung-Hyun
    • Spatial Information Research
    • /
    • v.19 no.6
    • /
    • pp.11-18
    • /
    • 2011
  • Urban space is the main contributor of greenhouse gas emissions, a primary cause of global warming. In order to reduce greenhouse gas emissions, planning at a city-level is necessary. The aim of this research is to develop a carbon emission model which can be used to create and manage urban spaces. In order to achieve this aim, the following methodologies were utilized. First, urban planning criteria related to population, landuse, and activity level were selected through theoretical speculation. Second, carbon dioxide emission was calculated based on electricity, gas energy, heating, petroleum, and water usages. Third, Seoul was selected as a case study city, and a carbon emission model was developed through a relational analysis between Seoul's urban planning criteria and carbon emissions. Thus far, various efforts have been made to respond to climate changes in urban spaces, but these have been limited to analyzing contributing factors in terms of their total amounts of carbon emissions in the entire city. However, the carbon emission model of this study is derived from urban planing criteria at a detailed scale. This sets our study apart from other studies by demonstrating a specific model in a local setting which can be utilized for lowering carbon emissions at a city level.