• Title/Summary/Keyword: 난류 박리 유동

Search Result 101, Processing Time 0.024 seconds

Numerical Study on Viscous Wakes of Two-Dimensional Screens Normal to the Uniform Stream (균일유동에 수직인 2차원 스크린 후류의 점성유동에 관한 수치적 연구)

  • 강신형;전우평
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.590-598
    • /
    • 1988
  • Viscous flows through a screen normal to an uniform flow are numerically simulated. A .kappa.-.epsilon. model is adopted for evaluation of the Reynolds stresses. The existence of a screen is regarded as extra sources in the momentum equations. The amount of extra sources is related to the resistance coefficient and the refraction coefficient of the screen. Flows are numerically simulated for various resistance coefficients and heights of the screen and Reynolds numbers. The present method has been verified to reasonably simulate viscous wakes and shear layers of the screen, for which the inviscid theory is quite limitted. As the fluids approach the screen, the velocity is reduced and the pressure is raised to satisfy the Bernoulli equation. After passing the screen, the velocity shows its minimum value at the down-stream, but static pressure is slowly recovered. A detached separation-bubble from the screen appears as the resistance coefficient is increased to a certain level. Such results are qualitatively in agreement with limitted experimental data available. The turbulent kinetic energy shows its maximum value at further down stream and decrease thereafter.

Application of PIV in the Flow Field Over a Fixed Dune Bed (언덕이 있는 하상유동 계측을 통한 PIV기법의 수력학적 적용연구)

  • Hyun B. S.;Balacharldar R.;Patel V, C.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.3
    • /
    • pp.10-15
    • /
    • 2002
  • The assessment of PIV to measure the mean velocity and turbulence was carried out over a train of fixed two-dimensional dunes. The agreement between the PIV and LDV is good enough even in regions of flow reversals and high shear. Though limited in the wall normal direction field-of-view, PIV provides instantaneous flow fields, which reveal the complex nature of flow over dunes, as well as more sophisticated analyses such as two-point space correlation and quadrant analysis with a reasonable accuracy The present study is expected to be directly applied to more complex flow such as sediment transport.

  • PDF

Numerical Study for 3D Turbulent Flow in High Incidence Compressor Cascade (고입사각 압축기 익렬 내의 3차원 난류유동에 관한 수치적 연구)

  • 안병진;정기호;김귀순;임진식;김유일
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.29-36
    • /
    • 2002
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Wavier-Stokes equations has been carried out for double-circular-arc compressor cascades and the results are compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE algorithm adopt pressure weighted interpolation method for non-staggered grid and hybrid scheme for the convective terms. Turbulence modeling is very important for prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. Considering computation times, $\kappa$-$\varepsilon$ turbulence model with wall function is used.

Relationship Between Local Wall Thinning and Velocity Components of Deflected Turbulent Flow Inside the Tee Sections of Carbon Steel Piping (탄소강 배관 티에서 편향 난류유동에 따른 속도성분과 국부감육의 상관관계)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kang, Deok-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.717-722
    • /
    • 2011
  • The aim of this study is to identify the locations at which local wall thinning occurs and to determine the turbulence coefficients related to local wall thinning. Experiments and numerical analyses of the tee sections of different down-scaled piping components were performed and the results were compared. Numerical analyses of full-scale models of actual plants were performed in order to simulate the flow behaviors inside the piping components. In order to determine the relationship between the turbulence coefficients and the rate of local wall thinning, numerical analyses of the tee components in the main feedwater systems were performed. The turbulence coefficients obtained from the numerical analyses were compared with the local wear rate obtained from the measurement data. From the comparison of the results, the vertical flow velocity component (Vr) flowing to the wall after separating in the wall due to the geometrical configuration and colliding with the wall directly at an angle of some degree was analogous to the configuration of local wall thinning.

Cross-Spectral Characteristics of Wall Pressure Fluctuations in Flows over a Backward-Facing Step (후향계단 주위의 난류 박리재부착유동에서의 벽압력변동의 통계적 특징)

  • Lee, In-Won;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.280-287
    • /
    • 2000
  • Laboratory measurements were made of wall pressure fluctuations in a separated and reattaching flow over a backward-facing step. An array of 32 microphones along the streamwise direction was utilized. Various statistical properties of pressure fluctuations were scrutinized. The main emphasis was placed on the flow inhomogeneity along the streamwise direction. One point statistics such as the streamwise distribution of rms pressure and autospectra were shown to be generally consistent with other studies. The coherences and wavenumber spectra in the streamwise directions were indicative of the presence of dual modes in pressure; one is the large-scale vortical structure in low frequency and the other is the boundary-layer-like decaying mode in high frequency.

Thrust Characteristics of Through-type Pintle Nozzle at Operating Altitudes Conditions (작동 고도에 따른 관통형 핀틀 노즐의 추력 특성 연구)

  • Jeong, Kiyeon;Hong, Ji-Seok;Heo, Junyoung;Sung, Hong-Gye;Yang, Juneseo;Ha, Dongsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.59-67
    • /
    • 2016
  • Numerical simulations have been performed to investigate thrust characteristics of a through-type pintle nozzle with or without flow separation at various operating altitudes. The low Reynolds number $k-{\varepsilon}$ with compressibility correction proposed by Sarkar are applied. The detail flow structures are observed and static pressures along nozzle wall are compared with experimental results. The flow separation in the pintle nozzle disappears and jet plume strongly expands as its operating altitude increases. To evaluate the thrust characteristics, the momentum term and pressure term of thrust are analyzed. Thrust and thrust coefficient at altitude 20 km are about 10% more than them at the ground 0km.

Numerical Simulation on Turbulent Shear Flows over Surface-Mounted Obstacles (표면에 부착된 장애물 주위의 난류전단유동에 관한 수치해석)

  • Myeong, Hyeon-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2593-2600
    • /
    • 1996
  • A modified k-$\varepsilon$ turbulence model having a generality is proposed in the present study, in which the constant $C_{\varepsilon2}$in the $\varepsilon$-equation is simply changed as a functional form of a new parameter both satisfying the tensor invariant condition and representing the extra straining effect on complex shear flows. With this model turbulent shear flows over two-dimensional obstacles placed in a channel are numerically studied for different blockage ratios and aspect ratios. Comparing with the available experimental data, the predicted results with the present model provide definite improvements over the standard model's results and work fairly well with the experimental data on the size of the recirculation zone, as well as mean velocity, wall static pressure, turbulent kinetic energy and Reynolds stresses.

A Numerical Study on the Flowfield around a NACA 0021 Airfoil at Angles of Attack (NACA 0021 익형 유동장의 수치해석적 연구)

  • Kim, Sang-Dug
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.20-25
    • /
    • 2016
  • A primary benefit of flight at high angle-of-attack conditions is to be able to reduce the speed of flight and maneuvers, which can enhance the capability of sensing and obstacle avoidance for a small UAV. The flight at high angle-of-attack conditions, however, is easy to be beyond stall which is characterized by substantial flow separation over an airfoil. Current numerical analysis was conducted on the capabilities of three representative turbulence models to predict the aerodynamic characteristics of a typical airfoil at angle-of-attack conditions. The investigation shows that these turbulence models provide good comparison with experimental data for attached flow at moderate angle-of-attack conditions. Calculation by current turbulence models are, however, not appropriate at high angle-of-attack conditions with flow separation.

Study of The Air Jet Normally Injected into Supersonic Stream (초음속 자유유동에 수직으로 분사되는 제트유동장에 관한 연구)

  • 구병수;김희동
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.42-49
    • /
    • 2000
  • A computation using the mass-averaged implicit Wavier-Stokes equations has been applied to solve the flow fields of the supersonic jets normally injected into supersonic freestreams and several types of turbulence model has been employed to close the governing equations. The ratio of the freestream to injection flow total pressures has been varied to elucidate the major characteristics of the mixing flow of the two streams. The freestream Mach number has been varied to investigate some change in the injection flow field. The results show that the positions of the separation and reattachment, locating upstream and downstream of the injection hole respectively, are strongly dependent on the ratio of total pressures and the freestream Mach number.

  • PDF

A Passive Control of the Unsteady Shock-Boundary Layer Interaction in Propulsion Nozzle (추진 노즐에서 발생하는 비정상 충격파-경계층의 간섭현상의 피동제어)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.211-214
    • /
    • 2011
  • In the present work, a computational study was conducted to investigate characteristic of lateral force on the flow fields inside the propulsion nozzle with step. The unsteady, compressible, axisymmetric, Navier-Stocks equations with SST k-${\omega}$ turbulence model are solved using a fully implicit finite volume scheme. In order to simulate the shut-down process of the engine, NPR is varied from 100.0 to 10.0. It is observed that the separation point and Mach-disk strongly depend on the variation of NPR, and adjusting the step lead to significantly different characteristics in the lateral forces.

  • PDF