• Title/Summary/Keyword: 난류 마찰관계식

Search Result 7, Processing Time 0.017 seconds

Friction Factor of Seepage Flow (투수층흐름에서의 마찰계수)

  • 유동훈;권순국
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.397-403
    • /
    • 1994
  • The seepage flow has been investigated conducting laboratory experiments mainly in order to determine the relation of seepage flow friction factor against Reynolds number. The apparatus of seepage flow measurements has the water flow almost horizontaly. Several sets of experiments were carried out, and various flow conditions were obtained in each set of flow. To cover wide range of flow conditions, used were various materials of different measurement sizes and various stages of water discharge in the seepage flow tests. Shape factor equation was developed using existing data, and based on the present laboratory data, an explicit equation was developed for the estimation of friction factor of seepage flow in the range of Reynolds number from about 1 to about 600. The same equation is expected for the flow condition of Reynolds number over 600, considering the trend of friction factor distribution.

  • PDF

Convective Heat Transfer Correlations for the Compact Heat Exchanger with Circular Tubes and Flat Tubes-Plate Fins (원형관 및 납작관-평판휜 형상의 밀집형 열교환기에 대한 대류열전달 상관관계식)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.291-299
    • /
    • 2010
  • Aspect-ratio-based numerical analysis is carried out to investigate the air-side convective heat transfer characteristics in compact heat exchangers with circular tubes and flat tubes-plate fins. The RNG $k-{\varepsilon}$ model is adopted for turbulence analysis. The numerical analysis is carried out for aspect ratios ranging from 3.06 to 5.44 and for Reynolds numbers ranging from 1,000 to 10,000. The calculated results indicate a correlation between the friction factor and Colburn j factor in the compact heat exchanger system for the range of aspect ratios under consideration. The results obtained for circular tubes and flat tubes-plate fins in this study can be utilized to realize the optimal design of an air conditioning system.

Numerical Study of Turbulent Heat Transfer in Helically Coiled Tubes (나선형 튜브내의 난류 열전달에 대한 수치적 연구)

  • Yoon, Dong-Hyeog;Park, Ju-Yeop;Seul, Kwang-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.783-789
    • /
    • 2012
  • In this study, turbulent flow and heat transfer characteristics in a helically coiled tube have been numerically investigated. Helically coiled tubes are commonly used in heat exchange systems to enhance the heat transfer rate. Accordingly, they have been widely studied experimentally; however, most studies have focused on the pressure drop and heat transfer correlations. The centrifugal force caused by a helical tube increases the wall shear stress and heat transfer rate on the outer side of the helical tube while decreasing those on the inner side of the tube. Therefore, this study quantitatively shows the variation of the local Nusselt number and friction factor along the circumference at the wall of a helical tube by varying the coil diameter and Reynolds number. It is seen that the local heat transfer rate and wall shear stress greatly decrease near the inner side of the tube, which can affect the safety of the tube materials. Moreover, this study verifies the previous experimental correlations for the friction factor and Nusselt number, and it shows that the correlation between the two in a straight tube can be applied to a helical tube. It is expected that the results of this study can be used as important data for the safety evaluation of heat exchangers and steam generators.

DNS of Drag-Reduced Turbulent Channel Flow due to Polymer Additives (폴리머 첨가제에 의한 항력감소 난류 채널 유동장의 직접수치모사)

  • Kim, Kyoung-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.799-807
    • /
    • 2010
  • Direct numerical simulations (DNS) of turbulent channel flow for which the drag is reduced by using polymer additives have been performed by a pseudo-spectral method. The Reynolds number based on the friction velocity and half-channel height is 395, and the polymeric stresses due to the polymer additives are evaluated using the FENE-P (finitely extensible nonlinear elastic-Peterlin) model. The numerical results show that the drag reduction rate is significantly affected by the parameters used in the FENE-P model, such as the maximum extensibility and relaxation time of the polymer molecules. The turbulence data for both low- and high-drag reduction regimes are analyzed. In addition, the effects of FENE-P model parameters on the flow characteristics have been investigated for the same drag reduction rate due to the polymer additives. Finally, the present DNS results have been used to verify the correlation between rheological parameters and the extent of drag reduction, which was suggested by Li et al. (2006).

Comparison of Viscosity Measurement of a Liquid Carbon Dioxide Used for a High-Pressure Coal Gasifier (고압 석탄 가스화기용 액상 이산화탄소의 점성측정 방법비교에 관한 연구)

  • KIM, KANGWOOK;KIM, CHANGYEON;KIM, HAKDUCK;SONG, JUHUN
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.581-589
    • /
    • 2015
  • In this study, the viscosity of a liquid carbon dioxide ($LCO_2$) that can potentially be used in a wet feed coal gasifier was evaluated. A pressurized capillary viscometer was employed to obtain the viscosity data of $LCO_2$ using two different methods. During the first method, the measurements were conducted under quasi-steady and high pressure flow conditions where two-phase flow was greatly minimized. The viscosity of $LCO_2$ was determined using turbulent friction relationship. At the second flow condition where unsteady flow is induced, the viscosity of $LCO_2$ was measured using the half-time pressure decay data and was further compared with values calculated by the first method.

Comparison between Wilcox к - ω turbulence models for supersonic flows (초음속 유동 해석을 위한 Wilcox к - ω 난류 모델 비교)

  • Kim, Min-Ha;Parent, Bernard
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.375-384
    • /
    • 2012
  • This paper presents numerical results comparing the performance of the 2008 Wilcox $\mathcal{k}-{\omega}$ turbulence model to the one of the 1988 Wilcox $\mathcal{k}-{\omega}$ model for supersonic flows. A comparison with experimental data is offered for a shock wave/turbulent boundary layer interaction case and two ramp injector mixing cases. Furthermore, a comparison is performed with empirical correlations on the basis of skin friction for flow over a flat plate and shear layer growth for a free shear layer. It is found that the maximum injectant mass fraction of some ramp injector cases is better predicted using the 1988 Wilcox model. On the other hand, the 2008 model performs better in simulating shock-boundary layer cases.

CO2 Exchange in Kwangneung Broadleaf Deciduous Forest in a Hilly Terrain in the Summer of 2002 (2002년 여름철 경사진 광릉 낙엽 활엽수림에서의 이산화탄소 교환)

  • Choi, Tae-jin;Kim, Joon;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.70-80
    • /
    • 2003
  • We report the first direct measurement of $CO_2$ flux over Kwangneung broadleaf deciduous forest, one of the tower flux sites in KoFlux network. Eddy covariance system was installed on a 30 m tower along with other meteorological instruments from June to August in 2002. Although the study site was non-ideal (with valley-like terrain), turbulence characteristics from limited wind directions (i.e., 90$\pm$45$^{\circ}$) was not significantly different from those obtained at simple, homogeneous terrains with an ideal fetch. Despite very low rate of data retrieval, preliminary results from our analysis are encouraging and worthy of further investigation. Ignoring the role of advection terms, the averaged net ecosystem exchange (NEE) of $CO_2$ ranged from -1.2 to 0.7 mg m$^{-2}$ s$^{-1}$ from June to August in 2002. The effect of weak turbulence on nocturnal NEE was examined in terms of friction velocity (u*) along with the estimation of storage term. The effect of low uf u* NEE was obvious with a threshold value of about 0.2 m s$^{-1}$ . The contribution of storage term to nocturnal NEE was insignificant; suggesting that the $CO_2$ stored within the forest canopy at night was probably removed by the drainage flow along the hilly terrain. This could be also an artifact of uncertainty in calculations of storage term based on a single-level concentration. The hyperbolic light response curves explained >80% of variation in the observed NEE, indicating that $CO_2$ exchange at the site was notably light-dependent. Such a relationship can be used effectively in filling up the missing gaps in NEE data through the season. Finally, a simple scaling analysis based on a linear flow model suggested that advection might play a significant role in NEE evaluation at this site.