• Title/Summary/Keyword: 난류채널유동

Search Result 62, Processing Time 0.024 seconds

Large Scale Bursting Event in a Channel Flow (난류 채널유동에서 생성된 거대 파열 현상에 관해서)

  • Na, Yang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1060-1067
    • /
    • 2001
  • A large-scale bursting event has been analyzed in a turbulent channel flow using a data obtained from a direct numerical simulation (DNS). Large-scale, plume-like structures have been frequently observed in many experimental results, but the origin of those structures is far from being fully understood. It is believed that those large scale events occur occasionally but contribute significantly to the generation of Reynolds shear stress in the outer layer. This paper attempts to give detailed examples of those large-scale motions observed in a turbulent channel flow at relatively low Reynolds number.

Analysis of Turbulent flow using Pressure Gradient Method (압력구배기법을 이용한 난류 유동장 해석)

  • 유근종
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 1999
  • Applicability of the pressure gradient method which is formulated based on pressure gradient is verified against turbulent flow analysis. In the pressure gradient method, pressure gradient instead of pressure itself is obtained using continuity constraint. Since correct pressure gradient is found only when mass conservation is satisfied, pressure gradient method can reflect physics of flow field properly The pressure gradient method is formulated with semi-staggered grid system which locates each primitive variables on the same grid point but evaluates pressure gradient in-between. This grid system ensures easy programming and reflection of correct physics in analysis. For verifying applicability of this method, the pressure gradient method is applied to turbulent flow analysis with low Reynolds number $\kappa$-$\varepsilon$ model. Turbulent flows include fully developed channel flow, backward-facing step flow, and conical diffuser flow. Prediction results show that the pressure gradient method can be applied to turbulent flow analysis. However, the pressure gradient method requires somewhat long computation time. Proper way to find optimum under-relaxation factor, $\gamma$, is also need to be developed.

  • PDF

Numerical Analysis of Effect of Baffles with 9 Diamond Type Holes on Flow Pattern (9개 다이아몬드형 구멍이 설치된 배플이 유동 양상에 미치는 효과에 대한 수치해석)

  • Ary, B.K.P;Ahn, S.W.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.32-38
    • /
    • 2011
  • 2개의 경사 배플을 가진 사각 채널내의 열전달과 유동양상에 특성을 조사하기 위해 수치해석을 행하였다. 본 연구에서는 바닥에서만 가열된 채널 내 2개의 배플에 9개의 다이아몬드형 구멍을 설치하였다. 배플은 19.8 cm의 폭과 23.2 cm의 길이 그리고 0.5 cm의 두께의 플렉시 글라스를 사용하였다. 다이아몬드형 구멍의 크기는 $2.55\;cm{\times}2.55\;cm$이며 배플 경사각은 $5^{\circ}$를 유지하였다. 레이놀즈수의 범위는 23,000에서 57,000 이다. SST k-${\omega}$ 난류모델을 사용하였다. 누셀트(Nu) 수의 수치해석 결과는 실험 결과로 검증하였다. 유동장에 관한 수치해석으로부터 배플 구멍 근처의 유동 양상을 나타낼 수 있었고 이러한 유동장이 온도장의 특징에 크게 영향을 미친다는 것을 나타내었다. 국부 누셀트수는$x/D_h$=2.5 에서 최대가 되었다.

Turbulent Fluid Flow and Heat Transfer in Concentric Annuli with Square-Ribbed Surface Roughness (사각돌출형 표면거칠기가 있는 이중동심원관 내의 난류유동과 열전달)

  • 안수환;이윤표;김경천
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1294-1303
    • /
    • 1993
  • The fully developed turbulent momentum and heat transfer induced by the square-ribed roughness elements on the inner wall surface in concentric annuli is studied analytically based on a modified turbulence model. The analytical results of the fluid flow is verified by experiment. The resulting momentum and heat transfer are discussed in terms of various parameters, such as the radius ratio, the relative roughness, the roughness density, fluid Reynolds number and for heat transfer, fluid Prandtl number. The study demonstrates that certain artificial roughness elements may be used to enhance heat transfer rates with advantages from the overall efficiency point of view.

Numerical Investigation on Turbulent Flow Characteristics in the Gap connecting with Two parallel Channels using Large Eddy Simulation (평행한 두 사각유로를 연결하는 협소유로내의 난류유동 특성에 관한 대형 와 수치 모사)

  • Hong, Seong-Ho;Seo, Jeong-Sik;Shin, Jong-Keun;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.55-60
    • /
    • 2008
  • Turbulent flow characteristics on the gap of two parallel channels are investigated using LES(large eddy simulation) approach. Two parallel channels have the same cross-section area and are connected by the narrow channel named the gap. Turbulent flow near the gap makes the flow pulsation along the streamwise direction of two channels. The flow condition is the Reynolds number of $2.5{\times}10^{-5}$. We compared the predicted results with the previous experimental results and presented the axial mean velocity, turbulent intensities, Reynolds shear stresses and turbulent kinetic energy.

  • PDF

Tensorial Time Scales for Turbulent Gradient Transport of Reynolds Stresses (레이놀즈 응력의 난류구배수송을 위한 텐서시간척도)

  • Cho Choong Won;Kim Kyoungyoun;Sung Hyung Jin;Chung Myung Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.687-695
    • /
    • 2005
  • On the notion that the Reynolds stresses are transported with different time scale depending on the transport direction, the third order velocity correlations are represented by a new turbulent gradient transport model with tonsorial Lagrangian time scale. In order to verify the proposed model, DNS data are first obtained in a turbulent channel flow at Re = 180 and tonsorial Lagrangian time scales are computed. The present model predictions are compared with DNS data and those predicted by the third-order turbulent transport model of Hanjalic and Launder that uses a scalar time scale. The result demonstrates that the Reynolds stresses are indeed transported with different time scale depending on the transport direction.

Effects of Rib Angles on Heat Transfer in a Divergent Square Channel With Ribs on One Wall (한 면에 리브가 설치된 확대 정사각 채널에서 리브 각이 열전달에 미치는 효과)

  • Lee, Myung Sung;Ahn, Soo Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.609-613
    • /
    • 2015
  • In this study, the experiments are performed to investigate the local heat transfer and pressure drops of developed turbulent flows in the diverging square channels along the axial distance. The square divergent channels are manufactured with a fixed rib height (e) = 10 mm. Four different parallel angled ribs ($a=30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$) are placed on the channel's one-sided wall only. TThe measurement are conducted within the range of Reynolds numbers from 22,000 to 79,000. The results show that a rib angle-of-attack of $45^{\circ}$ produces the best heat-transfer performance.

LARGE EDDY SIMULATION OF FULLY TURBULENT WAVY CHANNEL FLOW USING RESIDUAL-BASED VARIATIONAL MULTI-SCALE METHOD (변분다중스케일법을 이용한 파형벽면이 있는 채널 난류 유동의 대와류모사)

  • Chang, Kyoung-Sik;Yoon, Bum-Sang;Lee, Joo-Sung
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.49-55
    • /
    • 2011
  • Turbulent flows with wavy wall are simulated using Residual-based Variational Multiscale Method (RB-VMS) which is proposed by Bazilves et al(2007) as new Large Eddy Simulation methodology. Incompressible Navier-Stokes equations are integrated using Isogeometric analysis which adopt the basis function as NURBS. The Reynolds number is 6760 based on the bulk velocity and averaged channel height. And the amplitude (${\alpha}/{\lambda}$) of wavy wall is 0.05. The computational domain is $2{\lambda}{\times}1.05{\lambda}{\times}{\lambda}$ in the streamwise, wall normal and spanwise direction. Mean quantities and turbulent statistics near wavy wall are compared with DNS results of Cherukat et al.(1998). The predicted results show good agreement with reference data.

Hybrid RANS/LES Method for Turbulent Channel Flow (채널난류유동에 대한 하이브리드 RANS/LES 방법)

  • Myeong, Hyeon-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1088-1094
    • /
    • 2002
  • A channel flow with a high Reynolds number but coarse grids is numerically studied to investigate the prediction possibility of its turbulence which is three-dimensional and time-dependent. In the present paper, a Reynolds-Averaged Navier-Stokes (RANS) model, a Large Eddy Simulation (LES) and a Navier-Stokes equation with no model are tested with a new approach of hybrid RANS/LES, which reduces to RANS model in the boundary layers and at separation, and to Smagorinsky-like LES downstream of separation, and then compared with each other. It is found that the simulations of hybrid RANS/LES method sustain turbulence like those of LES and with no model, and the results are stable and fairly accurate. This indicates strongly that gradual improvements could lead to a simple, stable, and accurate approach to predict turbulence phenomena of wall-bounded flow.

Analysis of the Turbulent Heat/Fluid Flow in a Ribbed Channel for Various Rib Shapes (채널 내 주기적으로 배열된 요철 형상이 난류 유동장/온도장에 미치는 영향 연구)

  • Choi D. H.;Ryu D. N.;Han Y. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.128-133
    • /
    • 2002
  • The heat transfer characteristics of a turbulent flow in a ribbed two-dimensional channel have been investigated numerically. The fully elliptic governing equations, coupled with a four-equation turbulence model, $\kappa-\omega-\bar{t^2}-\epsilon_t$, are solved by a finite volume method of SIMPLE type. Calculations have been carried out for three rib cross-sections : square, triangular, and semicircular, with various rib pitches and Reynolds numbers. The procedure appears to be satisfactory as the results for the square rib compare favorably with available experimental data and earlier calculation. The optimal rib pitch that yields the maximum heat transfer has been identified. It is also found that the square rib is most effective in enhancing the heat transfer. The semicircular rib, on the other hand, incurs the least amount of pressure drop but the improvement in heat transfer is substantially lower.

  • PDF