• Title/Summary/Keyword: 난독화 알고리즘

Search Result 20, Processing Time 0.022 seconds

Image-Based Machine Learning Model for Malware Detection on LLVM IR (LLVM IR 대상 악성코드 탐지를 위한 이미지 기반 머신러닝 모델)

  • Kyung-bin Park;Yo-seob Yoon;Baasantogtokh Duulga;Kang-bin Yim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.31-40
    • /
    • 2024
  • Recently, static analysis-based signature and pattern detection technologies have limitations due to the advanced IT technologies. Moreover, It is a compatibility problem of multiple architectures and an inherent problem of signature and pattern detection. Malicious codes use obfuscation and packing techniques to hide their identity, and they also avoid existing static analysis-based signature and pattern detection techniques such as code rearrangement, register modification, and branching statement addition. In this paper, We propose an LLVM IR image-based automated static analysis of malicious code technology using machine learning to solve the problems mentioned above. Whether binary is obfuscated or packed, it's decompiled into LLVM IR, which is an intermediate representation dedicated to static analysis and optimization. "Therefore, the LLVM IR code is converted into an image before being fed to the CNN-based transfer learning algorithm ResNet50v2 supported by Keras". As a result, we present a model for image-based detection of malicious code.

A Technique to Apply Inlining for Code Obfuscation based on Genetic Algorithm (유전 알고리즘에 기반한 코드 난독화를 위한 인라인 적용 기법)

  • Kim, Jung-Il;Lee, Eun-Joo
    • Journal of Information Technology Services
    • /
    • v.10 no.3
    • /
    • pp.167-177
    • /
    • 2011
  • Code obfuscation is a technique that protects the abstract data contained in a program from malicious reverse engineering and various obfuscation methods have been proposed for obfuscating intention. As the abstract data of control flow about programs is important to clearly understand whole program, many control flow obfuscation transformations have been introduced. Generally, inlining is a compiler optimization which improves the performance of programs by reducing the overhead of calling invocation. In code obfuscation, inlining is used to protect the abstract data of control flow. In this paper, we define new control flow complexity metric based on entropy theory and N-Scope metric, and then apply genetic algorithm to obtain optimal inlining results, based on the defined metric.

Code Obfuscation using Java Reflection and Exception in Android (안드로이드 환경에서 클래스 반사와 예외 처리를 이용한 임의 코드 수행 방법 및 코드 은닉 방법)

  • Kim, Ji-Yun;Go, Nam-Hyeon;Park, Yong-su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.369-370
    • /
    • 2014
  • 본 논문에서는 안드로이드 환경에서 클래스 반사(Reflection)과 예외처리를 이용하여 안드로이드 보호 시스템을 우회하여 임의의 코드를 수행할 수 있는 방법을 제시한다. 일반적인 자바 환경과는 달리 안드로이드 환경에서는 보안 강화를 위해 APK 파일 내 루트 디렉토리의 클래스 파일만을 반사를 통해 동적 로딩이 가능하다. 하지만, 본 논문에서는 클래스 반사와 예외 처리를 이용하여 임의의 디렉토리 내 파일을 로딩 및 동적 실행할 수 있는 방법을 보이며 이 방법은 저자가 알기로는 기존에 알려지지 않은 방법이다. 이를 기반으로, 본 논문에서는 AES 암호와 동적 로딩을 이용하여, 모바일 어플리케이션의 내부 코드를 은폐하는 기법을 제안한다. 제안기법을 활용 시, 첫째 공격자의 입장에서는 내부 코드를 은폐하여 백신을 우회하는 악성코드 제작이 가능하고, 둘째, 프로그램 제작자의 입장에서는 핵심 알고리즘을 은폐하여 저작권을 보호하는 코드 제작이 가능하다. 안드로이드 버전 4.4.2(Kitkat)에서 프로토타입을 구현하여 제안 기법의 실효성을 보였다.

  • PDF

Java Automatic Identifier Renaming Technique and Protection Method (자바 자동 식별자 리네이밍 기법 및 보호 방법)

  • Kim, Ji-Yun;Hong, Soo-Hwa;Go, Nam-Hyeon;Lee, Woo-Seung;Park, Yong-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.709-719
    • /
    • 2015
  • This paper introduces a proper renaming service using variable action and security services against the analysis techniques in Java code. The renaming service that is introduced is separated into API pattern and loop condition. We present our scheme algorithm with known Java obfuscation techniques and tools in order to help readers understanding, and implement prototype to prove practicality in this paper. Test result using prototype shows 73% successful variable renaming rate. Using our scheme, cooperators can intuitionally understand all of code. Also, It helps malware analysts to predict malware action by variable name. But application source code that is developed by Java is exposed to hackers easily using our scheme. So we introduce Java application code protection methods, too.

Visualization of Malwares for Classification Through Deep Learning (딥러닝 기술을 활용한 멀웨어 분류를 위한 이미지화 기법)

  • Kim, Hyeonggyeom;Han, Seokmin;Lee, Suchul;Lee, Jun-Rak
    • Journal of Internet Computing and Services
    • /
    • v.19 no.5
    • /
    • pp.67-75
    • /
    • 2018
  • According to Symantec's Internet Security Threat Report(2018), Internet security threats such as Cryptojackings, Ransomwares, and Mobile malwares are rapidly increasing and diversifying. It means that detection of malwares requires not only the detection accuracy but also versatility. In the past, malware detection technology focused on qualitative performance due to the problems such as encryption and obfuscation. However, nowadays, considering the diversity of malware, versatility is required in detecting various malwares. Additionally the optimization is required in terms of computing power for detecting malware. In this paper, we present Stream Order(SO)-CNN and Incremental Coordinate(IC)-CNN, which are malware detection schemes using CNN(Convolutional Neural Network) that effectively detect intelligent and diversified malwares. The proposed methods visualize each malware binary file onto a fixed sized image. The visualized malware binaries are learned through GoogLeNet to form a deep learning model. Our model detects and classifies malwares. The proposed method reveals better performance than the conventional method.

Compiler Analysis Framework Using SVM-Based Genetic Algorithm : Feature and Model Selection Sensitivity (SVM 기반 유전 알고리즘을 이용한 컴파일러 분석 프레임워크 : 특징 및 모델 선택 민감성)

  • Hwang, Cheol-Hun;Shin, Gun-Yoon;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.537-544
    • /
    • 2020
  • Advances in detection techniques, such as mutation and obfuscation, are being advanced with the development of malware technology. In the malware detection technology, unknown malware detection technology is important, and a method for Malware Authorship Attribution that detects an unknown malicious code by identifying the author through distributed malware is being studied. In this paper, we try to extract the compiler information affecting the binary-based author identification method and to investigate the sensitivity of feature selection, probability and non-probability models, and optimization to classification efficiency between studies. In the experiment, the feature selection method through information gain and the support vector machine, which is a non-probability model, showed high efficiency. Among the optimization studies, high classification accuracy was obtained through feature selection and model optimization through the proposed framework, and resulted in 48% feature reduction and 53 faster execution speed. Through this study, we can confirm the sensitivity of feature selection, model, and optimization methods to classification efficiency.

Distributed Processing System Design and Implementation for Feature Extraction from Large-Scale Malicious Code (대용량 악성코드의 특징 추출 가속화를 위한 분산 처리 시스템 설계 및 구현)

  • Lee, Hyunjong;Euh, Seongyul;Hwang, Doosung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.2
    • /
    • pp.35-40
    • /
    • 2019
  • Traditional Malware Detection is susceptible for detecting malware which is modified by polymorphism or obfuscation technology. By learning patterns that are embedded in malware code, machine learning algorithms can detect similar behaviors and replace the current detection methods. Data must collected continuously in order to learn malicious code patterns that change over time. However, the process of storing and processing a large amount of malware files is accompanied by high space and time complexity. In this paper, an HDFS-based distributed processing system is designed to reduce space complexity and accelerate feature extraction time. Using a distributed processing system, we extract two API features based on filtering basis, 2-gram feature and APICFG feature and the generalization performance of ensemble learning models is compared. In experiments, the time complexity of the feature extraction was improved about 3.75 times faster than the processing time of a single computer, and the space complexity was about 5 times more efficient. The 2-gram feature was the best when comparing the classification performance by feature, but the learning time was long due to high dimensionality.

Development of Internet of Things Sensor-based Information System Robust to Security Attack (보안 공격에 강인한 사물인터넷 센서 기반 정보 시스템 개발)

  • Yun, Junhyeok;Kim, Mihui
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.95-107
    • /
    • 2022
  • With the rapid development of Internet of Things sensor devices and big data processing techniques, Internet of Things sensor-based information systems have been applied in various industries. Depending on the industry in which the information systems are applied, the accuracy of the information derived can affect the industry's efficiency and safety. Therefore, security techniques that protect sensing data from security attacks and enable information systems to derive accurate information are essential. In this paper, we examine security threats targeting each processing step of an Internet of Things sensor-based information system and propose security mechanisms for each security threat. Furthermore, we present an Internet of Things sensor-based information system structure that is robust to security attacks by integrating the proposed security mechanisms. In the proposed system, by applying lightweight security techniques such as a lightweight encryption algorithm and obfuscation-based data validation, security can be secured with minimal processing delay even in low-power and low-performance IoT sensor devices. Finally, we demonstrate the feasibility of the proposed system by implementing and performance evaluating each security mechanism.

Machine Learning-Based Malicious URL Detection Technique (머신러닝 기반 악성 URL 탐지 기법)

  • Han, Chae-rim;Yun, Su-hyun;Han, Myeong-jin;Lee, Il-Gu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.3
    • /
    • pp.555-564
    • /
    • 2022
  • Recently, cyberattacks are using hacking techniques utilizing intelligent and advanced malicious codes for non-face-to-face environments such as telecommuting, telemedicine, and automatic industrial facilities, and the damage is increasing. Traditional information protection systems, such as anti-virus, are a method of detecting known malicious URLs based on signature patterns, so unknown malicious URLs cannot be detected. In addition, the conventional static analysis-based malicious URL detection method is vulnerable to dynamic loading and cryptographic attacks. This study proposes a technique for efficiently detecting malicious URLs by dynamically learning malicious URL data. In the proposed detection technique, malicious codes are classified using machine learning-based feature selection algorithms, and the accuracy is improved by removing obfuscation elements after preprocessing using Weighted Euclidean Distance(WED). According to the experimental results, the proposed machine learning-based malicious URL detection technique shows an accuracy of 89.17%, which is improved by 2.82% compared to the conventional method.

A Study on the Cerber-Type Ransomware Detection Model Using Opcode and API Frequency and Correlation Coefficient (Opcode와 API의 빈도수와 상관계수를 활용한 Cerber형 랜섬웨어 탐지모델에 관한 연구)

  • Lee, Gye-Hyeok;Hwang, Min-Chae;Hyun, Dong-Yeop;Ku, Young-In;Yoo, Dong-Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.363-372
    • /
    • 2022
  • Since the recent COVID-19 Pandemic, the ransomware fandom has intensified along with the expansion of remote work. Currently, anti-virus vaccine companies are trying to respond to ransomware, but traditional file signature-based static analysis can be neutralized in the face of diversification, obfuscation, variants, or the emergence of new ransomware. Various studies are being conducted for such ransomware detection, and detection studies using signature-based static analysis and behavior-based dynamic analysis can be seen as the main research type at present. In this paper, the frequency of ".text Section" Opcode and the Native API used in practice was extracted, and the association between feature information selected using K-means Clustering algorithm, Cosine Similarity, and Pearson correlation coefficient was analyzed. In addition, Through experiments to classify and detect worms among other malware types and Cerber-type ransomware, it was verified that the selected feature information was specialized in detecting specific ransomware (Cerber). As a result of combining the finally selected feature information through the above verification and applying it to machine learning and performing hyper parameter optimization, the detection rate was up to 93.3%.