• Title/Summary/Keyword: 나노 공정법

Search Result 373, Processing Time 0.027 seconds

Spark plasma sintering 소결법에 의해 제작 된 Ti-Al-Si 합금타겟의 물성과 합금타겟을 이용하여 제작한 박막에 관한 연구

  • Lee, Han-Chan;Jeong, Deok-Hyeong;Mun, Gyeong-Il;Lee, Bung-Ju;Sin, Baek-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.237.1-237.1
    • /
    • 2013
  • Ti 와 Al 은 금속간의 화합물이 내산화성에 우수한 성질을 가지고 있으며 낮은 밀도와 고온에도 큰 변화가 없는 성질을 가지고 있다. 그리하여 내식 및 부식 관련 연구나 고온재료를 필요로 하는 우주, 엔진 제품 등에 많은 연구가 진행되고 있다. 또한 Ti-Al-N 박막은 경도가 우수하여 고속 공구 부품에 널리 사용되고 있으며 최근 Ti-Al-N 에 Si 첨가로 인하여 40 GPa 이상의 고경도와 1,000도 이상의 산화온도를 지닌 나노 혼합물 코팅을 형성 시키는 것으로 알려져 있다. 본 연구에서는 Ti, Al, Si 원분말을 PBM (Planetary Ball Milling) 방법을 사용하여 Ti-Al-Si 혼합분말로 제조하고, 제조된 분말들은 SPS (Spark Plasma Sintering) 공정을 통하여 Ti-Al-Si 합금타겟을 제작하였다. 제작된 Ti-Al-Si 합급타겟을 사용한 Sputtering 공정을 수행하여 Ti-Al-Si 3원계 박막을 증착하였다. 그 결과 기존 Ti (82 ${\mu}m$), Al (32 ${\mu}m$), Si (16 ${\mu}m$) 크기의 원분말들이 PBM (Planetary Ball Milling) 공정 후 Ti-Al-Si (18 ${\mu}m$) 로 입도가 작아진 것을 확인 할 수 있었고, 소결 후 타겟이 99% 이상의 높은 밀도를 가졌으며 원분말의 조성과 동일한 조성을 가진 타겟이 제작되었음을 확인하였다. Ti-Al-Si 타겟의 경도는 약 1,000 Hv 이상의 값을 보였으며, Ti-Al-Si-N 박막의 경우 타겟의 조성과 동일하였고 경도는 약 35 GPa 로 높은 경도 값을 가지는 것을 확인하였다. 내산화 테스트 결과 Ti-Al-Si-N 박막은 1,000도 에서도 박막의 손상이 가지 않았다.

  • PDF

A Study on the Electrochemical Characteristics of Langmuir-Blodgett Nano-Films of Phospholipid Compound (인지질 화합물의 나노 Langmuir-Blodgett막의 전기화학적 특성에 관한 연구)

  • Jung, A-Jin;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.311-316
    • /
    • 2012
  • We are investigated to an electrochemical characteristic for Langmuir-Blodgett (LB) films by cyclic voltammetry method. The phospholipid compound was deposited by using the LB method on the Indium tin oxide(ITO) glass. We tried to measure the electrochemical by using cyclic voltammetry with three-electrode system(an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode) in 0.5, 1.0, 1.5 and 2.0 N $NaClO_4$ solution. A measuring range was reduced from initial potential -1350 mV, continuously oxidized to 1650 mV. As a result, LB films of the phospholipid compounds are appeared irreversible process caused by only the oxidation current from the cyclic voltammogram. The diffusivity(D) effect of LB films decreased with increasing of phospholipid compound amount.

MXene Based Composite Membrane for Water Purification and Power Generation: A Review (정수 및 발전을 위한 맥신(MXene) 복합막에 관한 고찰)

  • Seohyun Kim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.181-190
    • /
    • 2023
  • Wastewater purification is one of the most important techniques for controlling environmental pollution and fulfilling the demand for freshwater supply. Various technologies, such as different types of distillations and reverse osmosis processes, need higher energy input. Capacitive deionization (CDI) is an alternative method in which power consumption is deficient and works on the supercapacitor principle. Research is going on to improve the electrode materials to improve the efficiency of the process. A reverse electrodialysis (RED) is the most commonly used desalination technology and osmotic power generator. Among many studies conducted to enhance the efficiency of RED, MXene, as an ion exchange membrane (IEM) and 2D nanofluidic channels in IEM, is rising as a promising way to improve the physical and electrochemical properties of RED. It is used alone and other polymeric materials are mixed with MXene to enhance the performance of the membrane further. The maximum desalination performances of MXene with preconditioning, Ti3C2Tx, Nafion, and hetero-structures were respectively measured, proving the potential of MXene for a promising material in the desalination industry. In terms of osmotic power generating via RED, adopting MXene as asymmetric nanofluidic ion channels in IEM significantly improved the maximum osmotic output power density, most of them surpassing the commercialization benchmark, 5 Wm-2. By connecting the number of unit cells, the output voltage reaches the point where it can directly power the electronic devices without any intermediate aid. The studies around MXene have significantly increased in recent years, yet there is more to be revealed about the application of MXene in the membrane and osmotic power-generating industry. This review discusses the electrodialysis process based on MXene composite membrane.

Measurement of Mechanical Properties of Thin Film Materials for Flexible Displays (플렉서블 디스플레이용 박막 소재 물성 평가)

  • Oh, Seung Jin;Ma, Boo Soo;Kim, Hyeong Jun;Yang, Chanhee;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.77-81
    • /
    • 2020
  • Commercialization of flexible OLED displays, such as rollable and foldable displays, has attracted tremendous interest in next-generation display markets. However, during bending deformation, cracking and delamination of thin films in the flexible display panels are the critical bottleneck for the commercialization. Therefore, measuring mechanical properties of the fragile thin films in the flexible display panels is essential to prevent mechanical failures of the devices. In this study, tensile properties of the metal and ceramic nano-thin films were quantitatively measured by using a direct tensile testing method on the water surface. Elastic modulus, tensile strength, and elongation of the sputtered Mo, MoTi thin films, and PECVD deposited SiNx thin films were successfully measured. As a result, the tensile properties were varied depending on the deposition conditions and the film thickness. The measured tensile property values can be applied to stress analysis modeling for mechanically robust flexible displays.

Fabrication and characterization of ZrxCe1-xO2 catalytic powder by a hydrothermal process (수열합성공정에 의한 ZrxCe1-xO2 촉매 분말의 제조 및 특성)

  • Choi, Yeon-Bin;Son, Jeong-hun;Sohn, Jeong Ho;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.309-312
    • /
    • 2017
  • The ceria powder is excellent in oxygen storage capacity (OSC) through the oxidation and reduction reaction of Ce ions and is used as a typical material for a three-way catalyst of an automobile which purifies the exhaust gas. However, since ceria generally has poor thermal stability at high temperatures, it is doped with metal ions to improve thermal stability. Therefore, in this study, Zr ions were doped into ceria powder, and their characteristics were further improved due to the increase of specific surface area with decreasing particle size due to doping. In this study, the synthesis of zirconium doped ceria nanopowder was synthesized by hydrothermal process. In order to synthesis Zr ion doped ceria nanopowder, the precursor reaction at was $200^{\circ}C$ for 6 hours. The average particle size of synthesized Zr doped $CeO_2$ nanopowder was below 20 nm. The specific surface area of synthesized Zr ion doped ceria nanopowder increased from $52.03m^2/g$ to $132.27m^2/g$ with Zr increased 30 %.

Electrospraying of Micro/Nano Particles for Protein Drug Delivery (단백질 약물 전달을 위한 마이크로/나노 입자의 전기분무 제조법)

  • Yoo, Ji-Youn;Kim, Min-Young;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.215-220
    • /
    • 2007
  • The control of the surface energy by electrohydrodynamic force provides electrospraying with various potential advantages such as simple particle size control, mono-dispersity, high recovery, and mild processing conditions. The advantages are quite helpful to improve the stability of protein drug and control its release. Herein, the nano-encapsulation of protein drugs using electrospraying was investigated. Albumin as a model protein was processed using uniaxial and co-axial electrospraying, and chitosan, polycaporlactone (PCL), and poly (ethylene glycol) (PEG) were used as encapsulation materials. The major processing parameters such as the conductivity of spraying liquids, flow rate, the distance of electrical potential gradient, etc were measured to obtain the maximum efficiency. In the chitosan systems, mean particles size decreases as flow rate and the distance between nozzle and the collecting part decreases. In the uniaxial technique of the PCL systems, mean particles size decreases as flow rate decreases. In the coaxial technique of the PCL systems, it was found that the particles size gets larger under the application of the higher ratio of inner-to-outer liquid flow rates. The primary particles formed out of an electrospraying nozzle showed narrow particle size distribution, but once they arrived to the collecting part, aggregation behavior was observed obviously. Efficient nano-encapsulation of albumin with PCL, PEG, and chitosan was conveniently achieved using electrospraying at above 12 kV.

Fabrication of Microstructures Using Double Contour Scanning (DCS) Method by Two-Photon Polymerization (이광자 광중합의 윤곽선 스캐닝법에 의한 마이크로 입체형상 제작)

  • Park Sang Hu;Lim Tae Woo;Lee Sang Ho;Yang Dong-Yol;Kong Hong Jin;Lee Kwang-Sup
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.146-150
    • /
    • 2005
  • A nano-stereolithouaphy (NSL) apparatus has been developed for fabrication of microstructures with the resolution of 150 nanometers. In the NSL process, a complicated 3D structure can be fabricated by building layer by layer, so it does not require any sacrificial layer or any supporting structure. A laminated layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) which was induced by a femtosecond laser. When the fabrication of a 3D laminated structure was finished, unsolidified liquid-stage resins were removed to develop the fabricated structure by dropping several droplets of solvent, then the polymerized structure was only left on the glass substrate. A microstructure is fabricated by vector scanning method to save the fabrication time. The shell thickness of a structure is very thin within 200 nm, when it is fabricated by a single contour scanning (SCS) path. So, a fabricated structure can be deformed easily in the developing process. In this work, a double contour scanning (DCS) method was proposed to reinforce the strength of a shell typed structure, and a microcup was fabricated to show the usefulness of the developed NSL system and the DCS method.

Low Temperature Synthesis of BaCeO3 Nano Powders by the Citrate Process (Citrate Process를 이용한 BaCeO3 나노 분말의 저온 합성)

  • Lee, Dong-Wook;Won, Jong-Han;Joo, Kyoung;Kim, Chang-Yeoul;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.604-609
    • /
    • 2002
  • Nanosized $BaCeO_3$ powders with the stoichiometric composition of a molecular level were synthesized by the citrate process based on the Pechini method. Polymeric precursor was formed by use of citric acid and ethylen glycol, as chelating agent of metal ions and reaction medium, respectively. Single phase orthorhombic structured $BaCeO_3$powders, about 100 nm sized and uniform shaped were obtained through the calcination of the polymeric precursor at $900^{\circ}C$ for 4 h. Extremely small quantities of carbonate ions($CO_^{2-}$) were completely decomposed at over $1100^{\circ}C$. The mean size of the powders was increased twice, however, it has very uniform distribution in its size and shape.

Study on the Membrane Cleaning-in-place (CIP) Conditions for the Dye Wastewater Treatment Process Using Polyamide Composite Membranes (폴리아마이드계 복합막을 이용한 염료 폐수 처리 공정 분리막 세척 조건 연구)

  • JeGal, Jong-Geon;Lee, Yong-Hwan;Hwang, Jeong-Eun;Jaung, Jae-Yun
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.94-102
    • /
    • 2008
  • For the treatment of the dye wastewater, a polyamide nano-composite membrane and reverse osmosis (RO) membranes were prepared using interfacial polymerization technique, in which piperazine, meta-phenylene diamine, and trimesoyl chloride were used as monomers, Their permselective properties were characterized with aqueous solutions of PEG 600, $Na_2SO_4$, and NaCl, and their performance was compared with that of Osmonics Co, They were found to be a typical nano-composite membrane and a low pressure RO membrane. Using them, a real dye wastewater supplied from the Kyungin Corporation, one of the domestic dye producer, was treated, studying the separation performances of the membranes, Also, during the wastewater treatment, cleaning in place (CIP) of the membranes was carried out regularly to recover the flux of the membranes. Three different chemical cleaners were employed for the CIP process and their performance were compared in this study.

Cu 함량 변화에 따른 Mo-N-Cu 박막의 특성 및 내마모 특성 평가

  • Choe, Min-Gi;Jo, Seong-U;Gwon, Jeong-Dae;Kim, Jong-Guk;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.227-227
    • /
    • 2010
  • 동력 전달을 위한 구동 부품에 대한 내마모성 개선을 통한 에너지 효율 및 부품의 수명 향상에 대한 사회적 관심이 급증하고 있다. 특히, 최근에는 자동차용 구동부품에 저마찰 내마모 특성이 우수한 Mo-N-Cu 나노복합체 박막에 대한 연구가 활발하게 진행되고 있다. 본 연구에서는 Mo-N-Cu 나노복합체 박막을 마그네트론 스퍼터링 증착법을 활용하였고, 이때 Mo 및 Cu 타겟을 적용하여 동시에 증착하였다. 진공 챔버의 진공도는 $5{\times}10^{-6}\;Torr$ 이하의 초기 진공도를 확보한 이후, 알곤 및 질소 가스를 주입하여 공정 압력이 5 mTorr 수준이 되도록 하였다. 이때 N2/(Ar+N2) = 0.5를 유지하였다. Mo-N-Cu 박막내에 Cu 함량 변화를 위해 Mo 캐소드는 D.C. 1 kW로 고정하고 Cu 캐소드에 R.F. 파워를 0, 40, 60, 80 W로 변화하였다. 박막의 두께는 증착시간을 변화하면서 $1\;{\mu}m$ 이상이 되도록 하였다. Cu 캐소드에 인가된 파워의 변화에 따라 Mo-N-Cu 박막내 Cu 함유량은 10 at.%까지 변화되는 것을 EDX 분석을 통해 확인하였다. 또한 증착된 Mo-N-Cu 박막의 표면 및 단면에 대한 FE-SEM 분석을 통하여 전형적인 주상구조를 지닌 MoN 박막에서 Cu 함량이 증가할수록 Mo-N-Cu 박막의 결정성을 방해하는 것을 확인하였다. 또한 XRD 분석을 통하여 박막의 결정 구조 분석을 하였고, Nano Indentor를 통하여 30 GPa 수준의 고경도를 지닌 박막이 형성됨을 확인하였다. 박막의 내마모 특성 평가를 위해 ball-on-disk 트라이보미터를 활용하여 마찰계수 평가를 수행하였고, Cu 함유량의 변화에 따라 마찰계수가 MoN 박막의 경우 0.8에서 Cu 함량이 5 at.%에서 0.15로 급격하게 낮아짐을 확인하였다.

  • PDF