• 제목/요약/키워드: 나노트라이볼로지

검색결과 97건 처리시간 0.018초

표면형상이 젖음각과 마이크로/나노 트라이볼로지 특성에 미치는 영향 (Effect of surface topography on wetting angle and micro/nano-tribological characteristics)

  • 윤의성;오현진;양승호;공호성
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.25-33
    • /
    • 2002
  • Effect of surface topography on the water wetting nature and micro/nano tribological characteristics of Si-wafer and PTFE was experimentally studied. The ion beam treatment was performed with a hollow cathode ion gun in different argon don dose conditions in a vacuum chamber to change the surface topography, Micro/nano tribological characteristics, water wetting angles and roughness were measured with a micro tribo tester, SPM (scanning prove microscope), contact anglemeter and profilometer, respectively. Results showed that surface roughness increased with the argon ion dose. The water wetting angle of tile ion beam treated samples also increased with the ion dose. Results also showed that micro-adhesion and micro-friction depend on the wetting characteristics of the PTFE samples. However, nano-triboloSical characteristics showed little dependence on the wetting angles. The water wetting characteristics of modified PTFE samples were discussed in terms of the surface topographic characteristics.

  • PDF

연마가공에서의 접촉계면 특성과 재료제거율간의 관계에 대한 연구 (On the Relationship between Material Removal and Interfacial Properties at Particulate Abrasive Machining Process)

  • 성인하
    • Tribology and Lubricants
    • /
    • 제25권6호
    • /
    • pp.404-408
    • /
    • 2009
  • 본 연구에서는 마이크로/나노입자를 이용한 연마가공 공정에서의 입자-표면간 접촉상황에서 접촉계면의 기계적 성질과 재료제거율간의 관계를 실험적으로 고찰하였다. 연마가공 공정에서의 입자-평면간 접촉을 모사하기 위하여 팁 대신 실리카 입자를 부착한 콜로이드 프로브를 이용한 원자현미경 실험을 통하여 마찰력과 강성을 실험적으로 측정하였다. 실험결과와 이론적 접촉해석으로부터, 마찰계수는 횡방향 접촉강성에 따라 대체적으로 증가하고 재료제거율은 실리카 입자와 Cu, PolySi, Ni과 같은 다양한 재료표면간 접촉에서의 마찰계수들과 지수함수적인 비례관계를 가지고 있음을 규명하였다.

트라이볼로지 관점에서의 그래핀 분자시뮬레이션 연구동향 (Review on Molecular Simulation of Graphene from a Tribological Perspective)

  • 김현준;정구현
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.55-63
    • /
    • 2020
  • Recently, graphene has attracted considerable attention owing to its unique electrical, optical, thermal, and mechanical properties. The broad spectrum of applications from optics, sensors, and electronics to biodevice have been proposed based on these properties. In particular, graphene has been proposed as a protective coating layer and solid lubricant for microdevices and nanodevices because of its high mechanical strength, chemical inertness, and low friction characteristics. During the past decade, extensive efforts have been made to explore the tribological characteristics of graphene under various conditions and to expand its applicability. In addition to the experimental approaches, the molecular simulations performed provide fundamental insights into the friction and wear characteristics of graphene resulting from molecular interactions. This work is a review of the studies conducted over the past decade on the tribological characteristics of graphene using molecular simulation. These studies demonstrate the principal mechanisms of the superlubricity of graphene and help clarify the influences of surface conditions on tribological behavior. In particular, the investigation of the effects of the number of layers, strength of adhesion to the substrate, surface roughness, and commensurability provides deeper insights into the tribological characteristics of graphene. These fundamental understandings can help elucidate the feasibility of graphene as a protective coating layer and solid lubricant for microdevices and nanodevices.

IBAD로 표면개질된 실리콘 표면의 나노 트라이볼로지적 특성 (Nanotribological Characteristics of Silicon Surfaces Modified by IBAD)

  • 박지현;양승호;공호성;장경영;윤의성
    • Tribology and Lubricants
    • /
    • 제18권1호
    • /
    • pp.1-8
    • /
    • 2002
  • Nano adhesion and friction between a $Si_{3}N_{4}$ AFM(atomic force microscope) tip and thin silver films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM and LFM(lateral force microscope) modes in various range of normal loads. Thin silver films deposited by IBAD (ion beam assisted deposition) on Si-wafer (100) and other Si-wafers of different surface roughness were used. Results showed that nano adhesion and friction decreased with the surface roughness. When the Si surfaces were coated by pure silver, the adhesion and friction decreased. But the adhesion and friction were not affected by the thickness of IBAD silver coating. As the normal force increased, the adhesion forces of bare Si-wafer and IBAD silver coating film remained constant, but the friction forces increased linearly. Test results suggested that the friction was mainly governed by the adhesion as long as the load was low.

SPM을 이용한 Si 표면위에 플라즈마 처리된 소수성 박막의 나노 트라이볼로지적 특성 연구 (Nanotribological characteristics of plasma treated hydrophobic thin films on silicon surfaces using SPM)

  • 윤의성;박지현;양승호;한흥구;공호성;고석근
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.35-42
    • /
    • 2001
  • Nanotribological characteristics between a Si$_3$N$_4$ AFM tip and hydrophobic thin films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes in various ranges of normal load. Plasma-modified thin polymeric films were deposited on Si-wafer (100). Results showed that wetting angle of plasma-modified thin polymeric film increased with the treating time, which resulted in the hydrophobic surface and the decrease of adhesion and friction. Nanotribological characteristics of these surfaces were compared with those of other hydrophobic surfaces, such as DLC, OTS and IBAD-Ag coated surfaces. Those of OTS coated surface was superior to those of others, though wetting angle of plasma-modified thin polymeric film is higher.

  • PDF

나노기공구조를 가진 알루미나필름의 트라이볼로지 특성 (Tribological Properties of Nanoporous Structured Alumina Film)

  • 김효상;김대현;안효석;한준희;이우
    • Tribology and Lubricants
    • /
    • 제26권1호
    • /
    • pp.14-20
    • /
    • 2010
  • Tribological properties of nanoporous structured alumina film was investigated. Alumina film (AAO: anodic aluminum oxide) of $60{\mu}m$ thickness having nanopores of 45 nm diameter with 105 nm interpore-diatance was fabricated by mild anodization process. Reciprocating ball-on-flat sliding friction tests using 1 mm diameter steel ball as a counterpart were carried out with wide range of normal load from 1 mN to 1 N in an ambient environment. The morphology of worn surfaces were analyzed using scanning electron microscopy. The friction coefficient was strongly influenced by the applied normal load. Smooth layer patches were formed on the worn surface of both AAO and steel ball at relatively high load (100 mN and 1 N) due to tribochemical reaction and compaction of wear debris. These tribolayers contributed to the lower friction at high loads. Extremely thin layer patches, due to mild plastic deformation of surface layer, were sparsely distributed on the worn surface of AAO at low loads (1 mN and 10 mN) without the evidence of tribochemical reaction. Delaminated wear particles were generated at high loads by fatigue due to repeated loading and sliding.

SUJ2 베어링 강의 트라이볼로지 특성에 대한 초음파나노표면개질 (UNSM) 및 원더프로세스크래프트 (WPC) 처리 효과 연구 (A Study on the Effects of Ultrasonic Nanocrystal Surface Modification (UNSM) and Wonder Process Craft (WPC) Treatments on Tribological Properties of SUJ2 Bearing Steel)

  • 아마노프 아웨즈한;카림바예프 루슬란;조인호;김응주
    • Tribology and Lubricants
    • /
    • 제38권4호
    • /
    • pp.170-178
    • /
    • 2022
  • Mechanical surface treatment is an excellent approach widely used to modulate and improve the performance and service life of bearings, gears, and frictional joints. The main purpose of this study is to investigate and compare the effect of ultrasonic nanocrystal surface modification (UNSM) and wonder process craft (WPC) on the surface and tribological properties of SUJ2 bearing steel. The surface roughness and hardness of the untreated and treated (UNSM- and WPC-treated) specimens were measured and compared. Their tribological properties were evaluated using a micro-tribometer under grease-lubricated and dry conditions against itself. Surface hardness measurement results revealed that both the UNSM- and WPC-treated specimens had a higher hardness than that of the untreated specimen. The surface roughness of the untreated specimen was reduced after UNSM and WPC treatments. Abrasive wear mode was observed on the surface of the specimens worn under grease-lubricated conditions, while adhesive wear mode was found on the surface of the specimens worn in dry conditions. According to the tribological test results, the friction coefficient and wear rate of the untreated specimens were reduced by the application of both the UNSM and WPC treatments under grease-lubricated and dry conditions.

AFM을 이용한 PMMA (Poly Methy1 Methacrylate) 박막의 나노트라이볼로지 연구 (Nanotribology of PMMA thin film using the AFM)

  • 김승현;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.89-92
    • /
    • 2003
  • Nano-scratch tests were performed on PMMA thin films spin-coated on a Si substrate using an atomic force microscopy (AFM) with loads ranging from 10nN to 100nN. At low applied loads, a ridge pattern was formed on the PMMA surface. No wear particles were observed during the pattern-forming mild wear. At high applied loads, severe wear occurred accompanied by wear particles. The film with the highest hardness showed the highest wear resistance. Friction force generated during the Scratching was closely related with surface deformation of the film.

  • PDF

AFM을 이용한 PMMA (Poly Methyl Methacrylate) 박막의 나노트라이볼로지 연구 (Nanotribology of PMMA Thin Films Using an AFM)

  • 김승현;김용석
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.59-64
    • /
    • 2004
  • Nano-scratch tests were performed on PMMA thin films spin-coated on a Si substrate using an atomic force microscopy (AFM) with loads ranging form 10nN to 100nN. At low loads, a ridge pattern was formed on the PMMA thin film surface. No wear particles were observed during the pattern-forming mild wear. At high loads, severe wear by plowing occurred, accompanied by wear particles. The film with the highest hardness showed the highest wear resistance. Friction force generated during the scratching was measured, which was closely related with surface deformation of the film. A simple empirical equation to deduce scratch hardness of the film from a linear fixed-distance scratch test was proposed, and scratching-speed dependency of the scratch hardness was displayed.

액체 윤활제 첨가제용 알킬 기능화된 산화 그래핀의 합성/분산 및 트라이볼로지적 특성 (Synthesis, Dispersion, and Tribological Characteristics of Alkyl Functionalized Graphene Oxide Nanosheets for Oil-based Lubricant Additives)

  • 최진영;김용재;이창섭
    • 공업화학
    • /
    • 제29권5호
    • /
    • pp.533-540
    • /
    • 2018
  • 그래핀은 표면 에너지가 낮고 원자단위의 얇은 물질로서 다양한 소재의 표면에 코팅시키거나 윤활제에 분산시켜 접착력과 마찰을 줄여주는 우수한 윤활유 첨가제로 보고되고 있다. 본 연구에서는 산화 그래핀 나노시트를 세 가지 종류의 염화알킬(butyl chloride, octyl chloride 및 tetradecyl chloride)을 이용하여 액체 윤활제 첨가제용 기능화 산화 그래핀(alkyl functionalized GO, FGO)을 제조하였다. 제조한 기능화 산화 그래핀의 화학적 및 구조적 특성은 Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), and transmission electron microscope (TEM)으로 분석하였다. 제조한 기능화 산화 그래핀은 PAO-0W40 오일에 0.02 wt%의 농도로 분산시켰으며, 트라이볼로지적 특성을 high frequency friction/wear tester로 분석한 결과, FGO-14이 첨가된 PAO-0W40 오일은 ball-on-disk의 직선왕복운동 하에서 기유에 비해 ~5.88%의 마찰계수와 ~3.8%의 마모 트랙 폭을 감소시킴으로써 내마모성이 향상됨을 확인하였다. 본 연구에서는 산화 그래핀의 성공적인 기능화와 더불어 다양한 탄화수소사슬 길이에 따른 분산 안정성 및 트라이볼로지적 특성의 향상을 입증하였다.