• Title/Summary/Keyword: 나노크기 영가철

검색결과 6건 처리시간 0.023초

공기접촉 제어를 통한 산화방지 Core-Shell 나노영가철의 제조 (Synthesis of Oxidation Resistant Core-shell Nanoscale Zero-valent Iron by Controlled Air Contact)

  • 안준영;김홍석;황인성
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제13권6호
    • /
    • pp.93-102
    • /
    • 2008
  • 본 연구는 대기중에서 안정한 나노크기 영가철을 제조한 후 그 특성을 평가하기 위해 수행되었다. XRD, XPS 분석을 통해 인위적으로 4, 8, 12 mL/min 유량의 공기 접촉을 통해 형성된 shell의 두께는 5 nm로 모두 유사한 것으로 확인되었고, shell의 성분은 magnetite(${Fe_3}{O_4}$), maghemite(${\gamma}-{Fe_2}{O_3}$)가 주성분임을 확인할 수 있었다. 4, 8, 12 mL/min의 접촉 공기 유량에 따른 shell의 명확한 성분 및 두께 변화는 확인할 수 없었다. 반면 대기 중에서 공기와 급속으로 접촉시킨 나노크기 영가철의 경우는 TEM 분석 결과 shell 층이 확인되지 않았다. 4, 8, 12 mL/min의 유량으로 공기 접촉된 나노크기 영가철의 TCE 분해능($k_{obs}$= 0.111, 0.102, and 0.086 $hr^{-1}$) 또한 큰 차이를 보이지 않았으며, fresh한 나노크기 영가철에 비해서는 약 80%의 분해효율을 나타내었다. Fresh한 나노크기 영가철 및 4 mL/min과 급속으로 공기 접촉시킨 나노크기 영가철을 물속에서 1일 동안 물과 접촉시킨 후 분해능을 평가한 실험에서는 공기 접촉 후 바로 분해 실험한 것 보다 분해능이 모두 향상되었다. 이는 물과의 반응을 통해 shell 층이 벗겨져 순수한 Fe(0)와 TCE의 접촉이 빨라져서 일어난 결과로 판단되어진다. 또한 각각 1주일과 2달간 대기 중에서 방치한 후 분해 실험한 결과 공기 접촉 후 바로 분해 실험한 결과와 비교해서 분해능이 90%와 50%로 감소하였다. 따라서 본 연구결과 일정 유량으로 공기 접촉 시킨 나노크기 영가철은 대기 중 산소에 안정하기 때문에 실제 현장 적용에 유리할 것으로 판단된다.

나노크기의 교질상 영가철 및 자철석에 대한 수용상의 거동특성 (Characterization of Behavior of Colloidal Zero-Valent Iron and Magnetite in Aqueous Environment)

  • 이우춘;김순오;김영호
    • 한국광물학회지
    • /
    • 제28권2호
    • /
    • pp.95-108
    • /
    • 2015
  • 광산배수가 지표에 노출되거나 주변 수계로 유입됨에 따라 나노크기의 철 교질물질이 형성되며, 이러한 철 교질물질은 심미적 오염을 발생시킬 뿐만 아니라 수생태계에도 악영향을 미친다. 이를 제어하기 위해 철 나노물질의 거동특성을 파악하는 것이 매우 중요한데, 아직까지 이에 대한 연구가 미흡하다. 본 연구는 영가철과 자철석을 이용하여 배경용액의 pH와 조성, 그리고 자연유기물에 따른 철 나노물질의 거동특성을 고찰하기 위해 수행되었다. 이를 위해 동적광산란분석기를 이용하여 철 나노물질의 입자크기와 표면 제타전위를 측정하였으며, DLVO (Derjaguin, Landau, Verwey, and Overbeek) 이론에 적용하여 응집 및 분산 등의 거동특성을 비교하였다. 철 나노물질은 영전하점 pH 근처에서는 입자간의 전기적 인력으로 인한 응집이 발생되며, 그보다 pH가 낮거나 높으면 전기적 반발력에 의해 분산이 잘되는 것을 확인하였다. 배경용액 내 양이온이 음이온보다 거동특성에 더 큰 영향을 끼치는 것을 확인하였으며, 특히 1가 양이온보다 2가 양이온이 입자표면간의 전기적인 인력 및 반발력에 더 큰 영향을 주는 것을 알 수 있었다. 수용상의 자연유기물은 철 나노물질을 코팅함으로써 표면을 음전하로 띠게 하여 분산이 잘 되게 하는 것을 확인하였다. 동일한 환경조건에서 자철석보다 영가철이 응집이 더 잘 되는 것으로 나타났는데, 이는 영가철의 낮은 안정성과 빠른 반응성으로 인해 철 산화물로 변질되기 때문인 것으로 판단된다.

전기영동법으로 알루미늄에 침적된 영가 철 나노입자에 의한 질산성 질소의 환원 (Reduction of Nitrate-Nitrogen by Zero-valent Iron Nanoparticles Deposited on Aluminum yin Electrophoretic Method)

  • 류원선
    • 청정기술
    • /
    • 제15권3호
    • /
    • pp.194-201
    • /
    • 2009
  • 최근 주요 수질오염 물질로 대두되고 있는 질산성 질소의 제거를 목적으로 영가 철 나노입자에 의한 질산성 질소의 환원반응성을 평가하였다. 영가 철 나노입자의 제조방법에 따른 반응성 차이를 규명하기 위해 유기용매 상에 계면활성제를 첨가하여 나노미터 크기 수준의 수용액 분산상에서 입자를 합성하는 마이크로에멀젼 방법과, 수용액 상의 철 이온을 환원시켜 입자를 합성하는 두 가지 방법으로 영가 철 나노입자를 합성하였다. 또한 전기영동법으로 알루미늄에 침적시킨 영가 철 나노입자에 의한 질산성 질소 제거속도를 측정하고, 고정화되지 않은 나노 철 입자에 의한 반응속도와 비교하였다. 환원반응을 질산성 질소에 대한 1차 반응으로 가정하여 수용액 방법 및 마이크로에멀전 방법으로 제조된 영가 철 나노입자의 반응성을 평가한 결과, 반응속도상수는 각각 $1.40{\times}10^{-2}min^{-1}$$3.49{\times}10^{-2}min^{-1}$ 로서 비표면적에 비례하여 증가하였다. 알루미늄에 침적된 나노입자는 현탁된 나노입자의 반응과 비교하여 약 30% 감소된 반응속도를 보였으나, 과량의 질산성 질소가 존재하는 경우 나노 철의 단위 질량당 질산성 질소의 제거효율 면에서 더 우수한 특성을 보였다. 나노철 입자의 현탁액은 반응시간 30분 이내에 반응속도가 감소하는 경향을 보였으나, 알루미늄에 침적된 나노철 입자는 3시간 이상 활성을 유지하였으며, 최종 생성물로 기체 질소를 발생시키는 것을 확인하였다.

마이크로와 나노 철을 이용한 고성능 화약물질(HMX, RDX 및 TNT)의 환원처리: 중간산물의 거동과 도역학 상수의 비교 (Reduction of High Explosives (HMX, RDX, and TNT) Using Micro- and Nano- Size Zero Valent Iron: Comparison of Kinetic Constants and Intermediates Behavior)

  • 배범한
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제11권6호
    • /
    • pp.83-91
    • /
    • 2006
  • 회분식 반응조에서 마이크로(mZVI) 및 나노(nZVI) 크기의 영가 철을 환원물질로 이용하여 고폭화약물질 3종에 대한 환원동역학을 측정하였다. 각 화약류를 이용하여 어미물질에 대한 nZVI와 mZVI의 비표면적 환원상수 $k_{SA}$과 비중량 환원상수 $k_{M}$을 측정한 후, 중간산물의 거동을 비교하였다. 그 결과 두 상수를 사용해서는 nZVI 반응조내 어미 물질과 중간환원산물들의 거동을 완전히 설명할 수 없었다. 화약물질을 mZVI로 처리한 반응조에서는 초기 환원물질인 nitroso-RDXs, nitroso-HMXs 및 hydroxylamino-TNT가 주로 축적되었으나, nZVI로 처리한 반응조에서는 동일한 겉보기 반응속도임에도 불구하고 환원말기물질인 극성중간산물들과 TAT가 축적되었다. 그러므로 중간산물들의 환원까지 고려하는 새로운 매계변수의 개발이 필요한 것으로 판단된다.

개질된 Nanoscale Zero-Valent Iron을 이용한 질산성질소 처리 (Removal of Nitrate by modified Nanoscale Zero-Valent Iron)

  • 김홍석;안준영;황경엽;박주양;황인성
    • 상하수도학회지
    • /
    • 제23권4호
    • /
    • pp.471-479
    • /
    • 2009
  • A Nanoscale Zero-Valent Iron(NZVI) was modified to build a reactor system to treat nitrate. Shell layer of the NZVI was modified by slow exposure of the iron surface to air flow, which produced NZVI particles that are resistant to aerial oxidation. A XANES (X-ray Absorption Near-Edge Structure) analysis revealed that the shell consists of magnetite ($Fe_3O_4$) dominantly. The shell-modified NZVI(0.5 g NZVI/ 120 mL) was able to degrade more than 95% of 30 mg/L of nitrate within $30 hr^{-1}$ ( pseudo first-order rate constant($k_{SA}$) normalzed to NZVI surface area ($17.96m^2/g$) : $0.0050L{\cdot}m^{-2}{\cdot}hr^{-1}$). Ammonia occupied about 90% of degradation products of nitrate. Nitrate degradation efficiencies increased with the increase of NZVI dose generally. Initial pH values of the reactor systems at 4, 7, and 10 did not affect nitrate removal rate and final pH values of all experiments were near 12. Nitrate removal experiments by using the shell-modified NZVI immobilized on a cellulose acetate (CA) membrane were also conducted. The nitrate removal efficiency of the CA membrane supported NZVI ($k_{SA}=0.0036L{\cdot}m^{-2}{\cdot}hr^{-1}$) was less than that of the NZVI slurries($k_{SA}=0.0050L{\cdot}m^{-2}{\cdot}hr^{-1}$), which is probably due to less surface area available for reduction and to kinetic retardation by nitrate transport through the CA membrane. The detachment of the NZVI from the CA membrane was minimal and impregnation of up to 1 g of NZVI onto 1 g of the CA membrane was found feasible.

ZVI/TIO2를 이용한 폴리염화비페닐로 오염된 토양 정화 (Application of ZVI/TiO2 towards Clean-up of the Contaminated Soil with Polychlorinated Biphenyls)

  • 박재욱;조윤진;이동근
    • 청정기술
    • /
    • 제29권2호
    • /
    • pp.118-125
    • /
    • 2023
  • 부지가 폴리염화비페닐(polychlorinated biphenyls, PCBs)로 오염되면, 심각한 환경 및 건강 위해를 피할 수 없게 된다. 따라서 혁신적이지만 경제성을 지니는 제자리 복원 기술이 오염 부지에 즉시 적용되어야 한다. TCE, PCE 및 DDT와 같은 염소계 유기화합물의 탈염소화를 위하여 최근에는 나노 규모의 영가-철(zero-valent iron, ZVI)이 성공적으로 적용되었고, 지구 지각에서도 풍부하게 존재하는 철은 환경적으로 안전한 것으로 통상적으로 간주된다. 입상 ZVI에 비해 나노 규모 ZVI의 반응성은 훨씬 높지만, 높은 표면에너지와 자기적 물성 때문에 나노 규모 ZVI 입자들은 서로 응결된다. 서로 응결되어 큰 입자로 전환되는 것을 방지하기 위해 먼저 생성된 나노 ZVI 입자들을 가능한 고정화하기 위한 방안으로 TiO2 분말에 나노 ZVI를 담지하였다. FeSO4와 TiO2 분말의 수용액상 슬러리에 NaBH4를 천천히 첨가하여10wt% ZVI/TiO2를 제조하였다. 입자 크기의 불균일성에도 불구하고, 나노 ZVI 입자들이 TiO2 외부 표면에 성공적으로 분산되었다. 제조된 ZVI/TiO2는 PCBs의 표준 물질 일종인 Aroclor 1242로 인위적으로 오염시킨 토양의 PCBs 분해 실험에 적용되었고, Aroclor 1242 분해 성능을 관찰하였다. 제조된 ZVI/TiO2는 Aroclor 1242 분해에 꽤 높은 반응성을 보였지만, 분자량이 큰 탄화수소로 판단되는 화합물이 부산물로 생성되어 토양에 잔류하는 것은 피할 수 없었다.