Reduction of High Explosives (HMX, RDX, and TNT) Using Micro- and Nano- Size Zero Valent Iron: Comparison of Kinetic Constants and Intermediates Behavior

마이크로와 나노 철을 이용한 고성능 화약물질(HMX, RDX 및 TNT)의 환원처리: 중간산물의 거동과 도역학 상수의 비교

  • Bae, Bum-Han (Department of Civil & Environmental Engineering, Kyungwon University)
  • 배범한 (경원대학교 공과대학 토목환경공학과)
  • Published : 2006.12.31

Abstract

Reduction kinetics and the behaviour of intermediate of three high explosives (HMX, RDX, and TNT) were studies in batch reactors using nano- or micro- size zero valent iron(nZVI or mZVI) as reducing agent. The kinetic constants normalized by the mass of iron ($k_M$) or by the surface area ($k_{SA}$) were measured and compared along with the changes in the concentrations of intermediates. Results showed that $k_M$ and $k_{SA}$ values were not suitable to fully explain the behaviour of mother compounds and reduced intermediates in the batch reactor. The concentrations of initial explosives degradation products, such as nitroso-RDXs, nitroso-HMXs, and hydroxylamino-TNTs, were higher in mZVI treated reactor than in nZVI treated reactor, whereas more reduced polar intermediates such as TAT were accumulated in the nZVI reactor. Therefore, a new parameter, which accounted for the intermediates reduction, needs to be developed.

회분식 반응조에서 마이크로(mZVI) 및 나노(nZVI) 크기의 영가 철을 환원물질로 이용하여 고폭화약물질 3종에 대한 환원동역학을 측정하였다. 각 화약류를 이용하여 어미물질에 대한 nZVI와 mZVI의 비표면적 환원상수 $k_{SA}$과 비중량 환원상수 $k_{M}$을 측정한 후, 중간산물의 거동을 비교하였다. 그 결과 두 상수를 사용해서는 nZVI 반응조내 어미 물질과 중간환원산물들의 거동을 완전히 설명할 수 없었다. 화약물질을 mZVI로 처리한 반응조에서는 초기 환원물질인 nitroso-RDXs, nitroso-HMXs 및 hydroxylamino-TNT가 주로 축적되었으나, nZVI로 처리한 반응조에서는 동일한 겉보기 반응속도임에도 불구하고 환원말기물질인 극성중간산물들과 TAT가 축적되었다. 그러므로 중간산물들의 환원까지 고려하는 새로운 매계변수의 개발이 필요한 것으로 판단된다.

Keywords

References

  1. 배범한, 1999, 금속 철을 이용한 TNT 환원시의 동역학 산정, 한국토양학회지, 4, 97-108
  2. 한국수자원공사, 다락대 사격장내 토양오염 정밀조사를 통한 한탄강댐 수질예측 및 복원공법 연구 (2002)
  3. 한국수자원공사, 군남홍수조절지 건설사업 사격장 피탄지 토양오염 정밀조사 보고서 (2005)
  4. Bae, B., Nurmi, J.T., and Tratnyek, P.G., Reductive degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)with zero valent iron in the presence of electron transfer mediators, Proceedings of Society of Environmental Toxicology and Chemistry Conference, Portland, (2005)
  5. Bandstra, J.Z., Miehr, R., Jonhson, R.L., and Tratnyek, P.G., 2005, Reduction of 2,4,6-trinitrotoluene by iron metal: Kinetic controls on product distribution in batch experiments, Environ. Sci. Technol., 39(1) 230-238 https://doi.org/10.1021/es049129p
  6. Borch T. and Gerlach, R., 2004, Use of reversed-phase high-performance liquid chromatography-diode array detection for complete separation of 2,4,6-trinitrotoluene Metabolites and EPA method 8330 explosives: Influence of temperature and an ionpair reagent, J. Chromatography A, 1022, 83-94 https://doi.org/10.1016/j.chroma.2003.09.067
  7. Devlin, J.F., Klausen, J., and Schwarzenbach, R.P., 1998, Kinetics of nitroaromatic reduction on granular iron in recirculating batch experiments, Environ. Sci. Technol., 32(13), 1941-1947 https://doi.org/10.1021/es970896g
  8. Dunnivant, F.M., Schwarzenbach, R.P., and Macalady, D.L., 1992, Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter, Environ. Sci. Technol., 26(11), 2133-2141 https://doi.org/10.1021/es00035a010
  9. Feng, J. and Lim, T.-T., 2005, Pathways and kinetics of carbon tetrachloride an chloroform reductions by nano-scale Fe and Fe/ Ni particles: comparison with commercial micro-scale Fe and Zn, Chemosphere, 59, 1267-1277 https://doi.org/10.1016/j.chemosphere.2004.11.038
  10. Gregory, K.B., Larese-Casanova, P., Parkin, G.E., and Scherer, M.M., 2004, Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine by FeII bound to magnetite, Environ. Sci. Technol., 38(5), 1408-1414 https://doi.org/10.1021/es034588w
  11. Harderlein, S.B., Weissmahr, K.W., and Schwarzenbach, R. P., 1996, Specific adsorption of nitroaromatic explosives and pesticides to clay minerals, Environ. Sci. Technol., 30(2), 612-622 https://doi.org/10.1021/es9503701
  12. Jeffrey, I.D. and John, P.K., Human Health Risks from TNT, RDX, and HMX in Environmental Media and Consideration of the U.S. Regularoty Environment, Lawrence Livermore National Laboratory, UCRL-JC-119715 (1994)
  13. Jenkins, T.F., Pennington, J.C., Ranney, T.A., Berry, T.E., Miyares, P.H., Walsh, M.E., Hewitt, A.D., Perron, N.M., Parker, L.V., Hayes, C.A., and Wahlgren, E.G., Characterization of Explosives Contamination at Military Firing Range, Tech Rep. ERDC TR-01-5, USACE Engineering Research and Development Center, Vicksburg, MS (2001)
  14. Klausen J., Trober S.P., Haderlein S.B., and Schwarzenbach, R.P., 1995, Reduction of substituted nitrobenzens by Fe(II) in aqueous mineral suspensions, Environ. Sci. Technol., 29(9), 2396-2404 https://doi.org/10.1021/es00009a036
  15. Lien, H.-L. and Zhang, W.-Z., 2001, Nanoscale iron particles for complete reduction of chlorinated ethenes, Colloids and Surfaces, 191, 97-105 https://doi.org/10.1016/S0927-7757(01)00767-1
  16. McCormick, M.L. and Adriaens, P., 2004, Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles, Environ. Sci. Technol., 38(4), 1045-1053 https://doi.org/10.1021/es030487m
  17. Monteil-Rivera, F., Paquet, L., Halasz, A., Montgomery, M.T., and Hawari, J., 2005, Reduction of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by zero valent iron: Product distribution, Environ. Sci. Technol., 39(24), 9725-9731 https://doi.org/10.1021/es051315n
  18. Nurmi, J.T., Tratnyek, P.J., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J.C., Matson, D.W., Penn, R.L., and Driessen, M.D., 2005, Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics, Environ. Sci. Technol., 39(5), 1221-1230 https://doi.org/10.1021/es049190u
  19. Oh, B.-T., Just, C.L., and Alvarez, P.J., 2001, Hexahydro-1,3,5-trinitro- 1,3,5-triazine mineralization by zerovalent iron and mixed anaerobic cultures, Environ. Sci. Technol., 35(21), 4341-4346 https://doi.org/10.1021/es010852e
  20. Oh, S.-Y., Cha, D.K., Kim, B.J., and P.C. Chiu, 2002, Effect of adsorption to elemental iron on the transformation of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine in solution, Environ. Tox. Chem., 21(7) 1384-1389 https://doi.org/10.1897/1551-5028(2002)021<1384:EOATEI>2.0.CO;2
  21. Ringelberg, D.B., Reynolds, C.M., Walsh, M.E., and Jenkins, T.F., 2003, RDX loss in a suface soil under saturated and well drained conditions, J. Environ., Qual. 32, 1244-1249 https://doi.org/10.2134/jeq2003.1244
  22. Schwarzenbach, R.P., Stierli, R., Lanz, K., and Zeyer, J., 1990, Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution, Environ. Sci. Technol., 34(10), 1566-1574
  23. Shermata, T.W., Halasz, A., Paquet, L., Thiboutot, S., Ampleton, G., and Hawari, J., 2001, The fate of cyclic nitramine explosives RDX in nature, Environ. Sci. Technol., 35(6), 1037-1040 https://doi.org/10.1021/es001389t
  24. Singh, J., Comfort, S.D., and Shea, P.J., 1999, Iron-mediated remediation of RDX-contaminated water and soil under controlled Eh/pH, Environ. Sci. Technol., 33(9), 1488-1494 https://doi.org/10.1021/es9806175
  25. Spain, J.C., Hughes, J.B., and Knackmuss, H.-J, Biotransformation of Nitroaromatic Compounds and Explosives, Lewis Publishers (2000)
  26. Timothy, L.J., Fish, W., Gorby, Y.A., and Tratnyek, P.G., 1998, Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface, J. of Contam. Hydrol., 29, 379-398 https://doi.org/10.1016/S0169-7722(97)00063-6
  27. U.S. EPA, Health Advisory for Hexahydor-1,3,5-trinitro-1,3,5- triazine (RDX) Criteria and Standard Division, Office of Drinking Water, Washington, DC (1988)
  28. U.S. EPA, Health Advisory for 2,4,6-trinitrotoluene (TNT) Criteria and Standard Division, Office of Drinking Water, Washington, DC (1988)
  29. Wanaratna, P., Christodoulatos, C., and Sidhoum, M., 2006, Kinetics of RDX degradation by zero-valent iron(ZVI), J. Hazard. Mater., 136(1), 68-74 https://doi.org/10.1016/j.jhazmat.2005.11.015
  30. Wang, C.Y., Zheng, D., and Hughes, J.B., 2000, Stability of hydroxylamino- and amino-intermediates from reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene, Bitechnol. Lett., 22(1), 15-19 https://doi.org/10.1023/A:1005663104888
  31. Zhang, B., Kendall, R.J., and Anderson, T.A., 2006, Toxicity of the explosive metabolites hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) and hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) to the earthworm Eisenia fetida, Chemosphere, 64, 86-95 https://doi.org/10.1016/j.chemosphere.2005.11.037