• Title/Summary/Keyword: 나노정밀도

Search Result 725, Processing Time 0.024 seconds

A Study on the ELID Grinding Characteristics of SF-5 Glass and Quartz Glass for the Nano Surface Roughness (나노 표면거칠기틀 위한 SF-5유리와 수정유리의 ELID 연삭 특성에 관한 연구)

  • 곽태수;박상후;오오모리히토시;배원병;양동열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.56-62
    • /
    • 2003
  • The precision fabrication of glass is increasingly demanded for the latest industrial applications of spherical lenses, micro-optical components, and so on. In many cases, the surface roughness of glass is required to be minute for improving the optical characteristics. In this paper, machining characteristics of SF-5 glass and quarts glass are studied by using the ELID grinding process to get mirror surface and productivity compared with a general lapping process. A rotary type grinder with air spindle was used for the experiments. Mitutoyo surface tester and AFM were also used to measure the grinded surface of glass. As the results of experiments, they showed that the surface roughness (Ra) of SF-5 glass was under 7.8 nm and that of quartz glass was under 3.0 m using the # 8000 grinder. So, the possibility of highly efficient and accurate surface for optical components can be achieved by the ELID grinding process.

Comparative Study on the Grinded Surface Characteristics of Quartz Glass and SF-5 Glass using ELID(Electrolytic In-Process Dressing) Grinding (수정유리와 SF-5 유리의 ELID 연삭특성 비교)

  • 박상후;양동열;곽태수;오오모리히토시
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.94-97
    • /
    • 2003
  • A precise fabrication technology of glass is increasingly demanded fer the latest Industrial applications of spherical lenses. micro-optical components, laser applications and so on. Most of cases, the surface roughness of glass is required to be minute for improving the optical characteristics. Then. the machining characteristics of SF-5 glass and quarts glass were studied by using the ELID grinding process to get mirror surface and productivity compared with a general lapping process. A rotary type grinder with ELID generator was used to make the mirror surface of glass and a Mitutoyo surface tester and a nano-hardness tester were also used to measure the grinded surface or glass. As the results of experiments. they showed that the surface roughness(Ra) of SF-5 glass was under 7.8 nm and that of quartz glass was under 3.0 nm using the # 8000 grinder. So, the possibility of highly efficient and accurate surface for optical components can be achieved by the ELID grinding process.

  • PDF

Micro-machining Characteristics using Focused Ion Beam (집속이온빔에 의한 미세가공 특성)

  • 이종항;박철우;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.636-639
    • /
    • 2003
  • It is difficult to machine below 10 micrometers by conventional machining methods, such as micro-EDM. However, ultra micro machining using focused ion beam(FIB) is able to machine to 50 nanometers. In addition, 3 dimensional structures can be made by a combination of FIB and CVD to the level of 10 nanometers. Die & moulds techniques are better than one-to-one machining techniques in the mass production of ultra size structures, in regards to production costs. In this case, the machining precision of die & moulds affects produced parts. Also, it is advantageous to machine die & moulds to the 10 micrometer level by FIB technique rather than other techniques. In this paper, the grooving characteristics for die & mould materials by FIB were carried out experimentally in order to compare the machining characteristics of FIB with conventional machining methods. The results showed that the machining parameters and the scanning path of FIB affects the precision. The machined width and depth of the groove varied depending on the required depth due to the redeposition of the sputtered ion material accumulating on both the bottom and the side of the wall.

  • PDF

A Study on Stamp Process Life Time in Thermal NIL (Thermal NIL 용 스탬프 공정 수명에 관한 연구)

  • Cho, Cheon-Soo;Lee, Moon-Jae;Oh, Ji-In;Lim, O-Kaung;Jeong, Myung-Yung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.239-244
    • /
    • 2011
  • Nano Imprint Lithography(NIL) is technique for copying a pattern from stamp with nano size pattern in order to replicated the materials. It is very important to demold in order to make NIL process effectively. Self Assembled Monolayers(SAM) coater is manufactured by means of decreasing surface energy with the stamp surface treatment to improve release characteristics. Manufactured device contains tilting and rotation option for increasing process life time by coating on the sidewall of the pattern in stamp. The stamp coated with optimized tilting angle $30^{\circ}$ and rotation speed of 10rpm has more imprinting cycles than the stamping coated without tilting and rotation. Effective SAM coating on the sidewall of the pattern in stamp will improve by 50% of process life time.

Wear Characteristics of CBN Tools on Hard Turning of AISI 4140 (고경도강(AISI 4140, HrC60)의 하드터닝에서 가공속도 및 윤활조건 변경에 따른 CBN 공구의 마모 특성)

  • Yang, Gi-Dong;Park, Kyung-Hee;Lee, Myung-Gyu;Lee, Dong Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.799-804
    • /
    • 2014
  • Hard turning is a machining process for hardened materials with high surface quality so that grinding process can be eliminated. Therefore, the hard turning is capable of reducing machining time and improving productivity. In this study, hardened AISI4140 (high-carbon chromium steel) that has excellent yield strength, toughness and wear resistance was finish turned using CBN tools. Wear characteristics of CBN tool was analyzed in dry and MQL mixed with nano-particle (Nano-MQL). The dominant fracture mechanism of CBN tool is diffusion and dissolution wear on the rake surface resulting in thinner cutting edge. Abrasive wear by hard inclusion in AISI4140 was dominant on the flank surface. Nano-MQL reduced tool wear comparing with the dry machining but chip evacuation should be considered. A cryogenically treated tool showed promising result in tool wear.

A Feasibility Study on the Cold Hollow Cathode Gas Ion Source for Multi-Aperture Focused Ion Beam System (다개구 이온빔 가공장치용 냉음극 방식의 가스 이온원의 가능성 평가에 관한 연구)

  • Choi, Sung-Chang;Kang, In-Cheol;Han, Jae-Kil;Kim, Tae-Gon;Min, Byung-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.383-388
    • /
    • 2011
  • The cold hollow cathode gas ion source is under development for multi aperture focused ion beam (FIB) system. In this paper, we describe the cold hollow cathode ion source design and the general ion source performance using Ar gas. The glow discharge characteristics and the ion beam current density at various operation conditions are investigated. This ion source can generate maximum ion beam current density of approximately 120 mA/$cm^2$ at ion beam potential of 10 kV. In order to effectively transport the energetic ions generated from the ion source to the multi-aperture focused ion beam(FIB) system, the einzel lens system for ion beam focusing is designed and evaluated. The ions ejected from the ion source can be forced to move near parallel to the beam axis by adjusting the potentials of the einzel lenses.

Laser Scanning Technology for Ultrasonic Horn Location Compensation to Modify Nano-size Grain (나노계면 형성을 위한 초음파 진동자 위치보정을 위한 레이저 스캐닝 기술)

  • Kim, Kyugnhan;Lee, Jaehoon;Kim, Hyunse;Park, Jongkweon;Yoon, Kwangho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1121-1126
    • /
    • 2014
  • To compensate location error of ultrasonic horn, the laser scanning system based on the galvanometer scanner is developed. It consists of the 3-Axis linear stage and the 2-Axis galvanometer scanner. To measure surface shape of three-dimensional free form surface, the dynamic focusing unit is adopted, which can maintain consistent focal plane. With combining the linear stage and the galvanometer scanner, the scanning area is enlarged. The scanning CAD system is developed by stage motion teaching and NURBS method. The laser scanning system is tested by marking experiment with the semi-cylindrical sample. Scanning accuracy is investigated by measured laser marked line width with various scanning speed.

Development of a Far Field type Megasonic for Nano Particle Removing (나노입자 제거용 Far Field 메가소닉 개발)

  • Lee, Yanglae;Kim, Hyunse;Lim, Euisu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1193-1201
    • /
    • 2013
  • Improved far field type(improved type) megasonic applicable to the cleaning equipment of single wafer processing type has been developed. In this study, to improve the uniformity of acoustic pressure distribution(APD), we utilize far field with relatively uniform APD, piezoelectric ceramic with a triangle hole in its center to prevent standing wave resulted from radial mode, and reflected wave from the wall of waveguide. On the basis of these methods, two analysis models of improved type were designed to which piezoelectric ceramic of different shape of electrode attached, and APD were analyzed by means of finite element method, and then one of them was selected by analysis results, finally, the selected model was fabricated. Test results show that the fabricated is better in the uniformity of APD than the imported and the conventional, also the fabricated shows high particle removal efficiency of 92.3% using DI water alone as a cleaning solution.

A Study on Nano-polishing of Injection Molds using Fixed Abrasive Pad (고정입자패드를 이용한 사출금형의 나노 폴리싱에 관한 연구)

  • Choe, Jae-Yeong;Kim, Ho-Yun;Park, Jae-Hong;Jeong, Hae-Do;Seo, Heon-Deok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.212-220
    • /
    • 2002
  • The finishing process for die and mold manufacturing is very important because it influences the final quality of products. Injection molds need higher quality surface than general purpose dies and molds. Conventional polishing can not make mold surface down to nanometer roughness efficiently because of their loading and glazing. This paper focused on the development of fixed abrasive pad using water swelling mechanism of polymer binder network. Self-conditioning was recognized as the long term polishing stabilization tool without any loading or glazing because water makes fixed abrasives free by swelling of the pad. Consequently, stable nano-polishing process has been applied on the injection mold, from the experimental results with polished surface roughness of Ra 15.1nm on STD-11 die steel.

Development of the Precision Positioning Mechanism by Nano Displacement Magnification Device (나노 변위확대기구의 정밀위치결정기구에 관한 연구)

  • Park, Chang-Yong;Kweon, Hyun-Kyu;Zhao, Zhijun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • A new precision positioning mechanism for stage was been developed by Displacement Magnification Device(DMD) in this paper. The DMD was composed of the beam and multilayer piezoelectric actuators. The theoretical and experimental analysis of DMD to enlarge displacement more then 50times were discussed. And the 2-axis stage by using displacement amplification apparatus was added in the new DMD, and it was able to do it through finite element analysis and experiment. As the results, the magnification of DMD can be obtained about $100{mu}m$ displacement to the 10V input voltage($1.5{mu}m$). And the about 50nm of linearity error in the $30{mu}m$ measurement range and 20times of the amplification in displacement can be measured. In addition, the experimental results are confirmed the possibility of millimeter displacement characteristics and correspond to finite element analysis results.