• 제목/요약/키워드: 나노정밀도

검색결과 725건 처리시간 0.031초

금속물질에 따른 나노구조를 이용한 국소 표면 플라즈몬 공명 센서 특성 분석 (Estimation of Sensitivity Enhancements of Material-Dependent Localized Surface Plasmon Resonance Sensor Using Nanowire Patterns)

  • 안희상;안동규;송영민;김규정
    • 한국정밀공학회지
    • /
    • 제33권5호
    • /
    • pp.363-369
    • /
    • 2016
  • We explored localized plasmonic field enhancements using nanowire patterns to improve the sensitivity of a surface plasmon resonance (SPR) sensor. Two different materials, gold and silver, were considered for sample materials. Gold and silver nanowire patterns were fabricated by electron beam lithography for experimental measurements. The wavelength SPR sensor was also designed for these experiments. The material-dependent field enhancements on nanowire patterns were first calculated based on Maxwell's equations. Resonance wavelength shifts were indicated as changes in the refractive index from 1.33 to 1.36. The SPR sensor with silver nanowire patterns showed a much larger resonance wavelength shift than the sensor with gold nanowire patterns, in good agreement with simulation results. These results suggest that silver nanowire patterns are more efficient than gold nanowire patterns, and could be used for sensitivity enhancements in situations where biocompatibility is not a consideration.

생물학적 초미세력 검출을 위한 탄소나노튜브 프로브의 제작 및 기계적 특성 검출 (Fabrication and Mechanical Properties of Carbon Nanotube Probe for Ultrasmall Force Measurement in Biological Application)

  • 권순근;박효준;이형우;곽윤근;김수현
    • 한국정밀공학회지
    • /
    • 제25권5호
    • /
    • pp.140-147
    • /
    • 2008
  • In this study, a carbon nanotube probe (CNT probe) is proposed as a mechanical force transducer for the measurement of pico-Newton (pN) order force in biological applications. In order to measure nantube's displacement in the air or liquid environment, the fabrication of a CNT probe with tip-specific loading of fluorescent dyes is performed using tip- specific functionalization of the nanotube and chemical bonding between dyes and nanotube. Also, we experimentally investigated the mechanical properties of the CNT probe using electrostatic actuation and fluorescence microscope measurement. Using fluorescence measurement of the tip deflection according to the applied voltage, we optimized the bending stiffness of the CNT probe, therefore determined the spring constant of the CNT probe. The results show that the spring constant of CNT probes is as small as 1 pN/nm and CNT probes can be used to measure pN order force.

마이크로/나노 구조를 갖는 초발수성 표면의 제작 및 분사 액적의 충돌 특성 연구 (Fabrication of a Micro/Nano-scaled Super-water-repellent Surface and Its Impact Behaviors of a Shooting Water Droplet)

  • 김형모;이상민;이찬;김무환;김준원
    • 한국정밀공학회지
    • /
    • 제29권9호
    • /
    • pp.1020-1025
    • /
    • 2012
  • In this study, we fabricated the superhydrophobic and super-water-repellent surface with the micro/nano scale structures using simple conventional silicon wet-etching technique and the black silicon method by deep reactive ion etching. These fabrication methods are simple but very effective. Also we reported the droplet impact experimental results on the micro/nano-scaled surface. There are two representative impact behaviors as "rebound" and "fragmentation". We found the transition Weber number between "rebound" and "fragmentation" statements, experimentally. Additionally, we concerned about the dimensionless spreading diameters for our super-water-repellent surface. The novel characterization method was introduced for analysis including the "fragmentation" region. As a result, our super-water-repellent surface with the micro/nano-scaled structures shows the different impact behaviors compared with a reference smooth surface, by some meaningful experiments.

355 nm UV 레이저 어블레이션을 이용한 마이크로-나노 구조의 액적 분리용 박막 필터 쾌속 제작 (Rapid Fabrication of Micro-nano Structured Thin Film for Water Droplet Separation using 355nm UV Laser Ablation)

  • 신보성
    • 한국정밀공학회지
    • /
    • 제29권7호
    • /
    • pp.799-804
    • /
    • 2012
  • Recently micro-nano structures has widely been reported to improve the performance of waterproof, heat isolation, sound and light absorption in various fields of electric devices such as mobiles, battery, display and solar panels. A lot of micro-sized holes on the surface of thin film provide excellent sound, or heat, or light transmission efficiency more than solid film and simultaneously nano-sized protrusions around micro hole increase the hydrophobicity of the surface of thin film because of lotus leaf effects as generally known previously. In this paper new rapid fabrication process with 355 nm UV laser ablation was proposed to get micro-nano structures on the surface of thin film, which have only been observed at higher laser fluence. Developed thin micro-nano structured film was also investigated the hydrophobic property by measuring the contact angle and demonstrated the possibility to apply to water droplet separation.

나노 윤활유를 이용한 스크롤 압축기 스러스트 베어링의 윤활특성 평가 (Performance Evaluation of Nano-Lubricants at Thrust Slide-Bearing of Scroll Compressor)

  • 조한종;조용일;조상원;이재근;박민찬;김대진;이광호
    • 한국정밀공학회지
    • /
    • 제29권1호
    • /
    • pp.121-125
    • /
    • 2012
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil is evaluated using the thrust bearing experimental apparatus for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and rotating speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing rotating speed and normal force. The friction coefficient of carbon nano-oil is 0.023, while that of pure oil is 0.03 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

나노미터 영역 길이 측정 위한 미터 소급성을 갖는 원자간력 현미경 개발 (Development of a Metrological Atomic Force Microscope for the Length Measurements of Nanometer Range)

  • 김종안;김재완;박병천;엄태봉;홍재완
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.75-82
    • /
    • 2004
  • A metrological atomic force microscope (M-AFM) was developed fur the length measurements of nanometer range, through the modification of a commercial AFM. To eliminate nonlinearity and crosstalk of the PZT tube scanner of the commercial AFM, a two-axis flexure hinge scanner employing built-in capacitive sensors is used for X-Y motion instead of PZT tube scanner. Then two-dimensional displacement of the scanner is measured using two-axis heterodyne laser interferometer to ensure the meter-traceability. Through the measurements of several specimens, we could verify the elimination of nonlinearity and crosstalk. The uncertainty of length measurements was estimated according to the Guide to the Expression of Uncertainty in Measurement. Among several sources of uncertainty, the primary one is the drift of laser interferometer output, which occurs mainly from the variation of refractive index of air and the thermal stability. The Abbe error, which is proportional to the measured length, is another primary uncertainty source coming from the parasitic motion of the scanner. The expanded uncertainty (k =2) of length measurements using the M-AFM is √(4.26)$^2$+(2.84${\times}$10$^{-4}$ ${\times}$L)$^2$(nm), where f is the measured length in nm. We also measured the pitch of one-dimensional grating and compared the results with those obtained by optical diffractometry. The relative difference between these results is less than 0.01 %.

진공 및 복사 단열에 의한 저온 유지 기술 (Vacuum and Radiation Insulation in the Cryogenic Engineering)

  • 박성제
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.9-17
    • /
    • 2002
  • 최근에 초전도 산업과 저온 작동 정밀 센서 기술의 발전으로 극저온 냉동기 또는 극저온 한제에 의해 냉각된 저온 용기의 저온 유지 기술이 필요하게 되었다. 또한 의료용 MRI, 야간 투시경용 적외선 센서, 이동통신무선기지국용 초전도 필터 등과 같이 일반인들도 극저온을 이용하게 되어 보다 사용하기 쉽고 안정적인 저온용기가 요구되고 있다. 저온용기의 저온 유지 기술은 진공 및 복사 단열 기술 뿐만 아니라 극저온 발생기술과 진공 발생 기술이 같이 고려되어야 하는 복합기술로서 앞으로 전자, 정보 통신, 나노, 바이오 산업 등에도 널리 활용될 수 있는 기반 기술로 자리 매김 할 것으로 보여 관련 연구자들의 많은 노력과 관심이 요구된다.

초정밀 나노 스테이지에서의 다중 변위 확대 기구 해석 (Analysis of Multiple Displacement Magnification Mechanism in Ultraprecision Nano Stage)

  • 민경석;최우천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1273-1276
    • /
    • 2005
  • A displacement magnification mechanism is usually employed in a nano-positioning stage to achieve a large stage motion. A lever mechanism is the most widely used displacement magnifying mechanism. For more large stage motion, double or multiple lever mechanisms can be used. In this case, a more accurate analysis model is needed. This study proposes a more reasonable analysis model for a multiple lever mechanism based on the single lever mechanism model. This paper describes that the high equivalent stiffness of the lever is the most important factor reducing the magnification ratio of the lever mechanism through increasing the deflection of the link and including the axial displacement of the pivot.

  • PDF

대면적 박판 스탬퍼 정밀 가공을 위한 연구 (A Study on the Precision Processing of Thin Stamper with Global Area)

  • 최두선;제태진;서승호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.632-635
    • /
    • 2003
  • As a process technology of nano pattern with a new conception for economic and practical technology of alternative nano process. process technologies such as Embossing, Imprinting. Molding and Inking are beginning to make its appearance. Among these alternative processes, nano mold process is a process that is of benefit to mass production and keeps excellency of reproduction and high quality of parts. In this study, we experienced micro precision machining technology of nano stamper for the injection mold of optical disk with big capacity. Especially, Flatness and uniformity are important for nano stamper with global area, for the purpose of developing polishing technology of micro precision of Back polishing only being used for nano stamper, we carried out a basic study to secure flatness standards

  • PDF

초정밀 3축 이송 스테이지의 개발 :2. 동특성 실험 및 성능 평가 (Development of a 3-axis fine positioning stage : Part 2. Experiments and performance evaluation)

  • 강중옥;김만달;백석;한창수;홍성욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1207-1210
    • /
    • 2003
  • This paper deals with experiments for dynamic characteristics and performance evaluation of the 3-axis fine positioning stage developed in [1]. The features of the developed fine positioning stage are the long stroke due to the magnetically preloaded PZT actuators, the minimum motion crosstalk due to the use of a ball contact mechanism and the compact design. The dynamic characteristics of the actuator and the stage are tested with the preload changed in order to validate the actuator and the stage design. Performance evaluation is also made for the PZT actuators as well as the stage positioning accuracy. Experimental results show that the developed stage is accurate enough to be used for nanometer positioning.

  • PDF