• Title/Summary/Keyword: 나노생산

Search Result 402, Processing Time 0.033 seconds

Stabilization of Nanoemulsion Using PEG-free Surfactant (PEG-free 계면활성제를 사용한 Nanoemulsion의 안정화)

  • Kim, Huiju;Jung, Taek Kyu;Kim, Ja Young;Yoon, Kyung-Sup
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.434-447
    • /
    • 2019
  • Polyethylene glycol (PEG) is widely used in cosmetics as a surfactant, detergent and emulsifier. During the manufacturing process, 1,4-dioxane, which is toxic to humans, can be produced as a by-product by dimerization of ethylene oxide. As consumers' interest in cosmetic ingredients has increased, the need for safe emulsion research without PEG ingredients in the personal care market has increased. With increasing consumer interest in cosmetic ingredients, the need for safer emulsion research without the PEG ingredient in the personal care market has increased. In this study, we aimed to develop and stabilize nanoemulsion formulation without PEG. Response Surface Methodology (RSM) was used to develop optimized nanoemulsion formulations. Surfactant content (2~4%), oil content (4~8%) and polyol content (12~24%) were set as independent variables as a result of preliminary experiments for determining independent variables and ranges. The particle size, zeta potential, turbidity, and polydispersity index of the formulation were measured as response variables. As a result of measurement of the prepared nanoemulsion by FIB (Focused ion beam), spherical particles were found to have a size distribution of 100 to 200 nm. The stability of each formulation was evaluated for 30 days at each temperature ($4^{\circ}C$, $25^{\circ}C$, and $45^{\circ}C$). The optimal formulation considering the optimum particle size, turbidity, polydispersity index and zeta potential was found to be surfactant (2%), oil (8%) and polyol (24%).

Application of Layer-by-Layer Assembly in Triboelectric Energy Harvesting (마찰대전 기반의 에너지 하베스팅에서 다층박막적층법의 응용)

  • Habtamu Gebeyehu, Menge;Yong Tae, Park
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.371-377
    • /
    • 2022
  • Triboelectric nanogenerator (TENG) devices have generated a lot of interest in recent decades. TENG technology, which is one of the technologies for harvesting mechanical energy among the energy wasted in the environment, is obtained by the dual effect of electrostatic induction and triboelectric charging. Recently, a multilayer thin film stacking method (or layer-by-layer (LbL) self-assembly technique) is being considered as a method to improve the performance of TENG and apply it to new fields. This LbL assembly technology can not only improve the performance of TENG and successfully overcome the thickness problem in applications, but also present an inexpensive, environmentally friendly process and be used for large-scale and mass production. In this review, recent studies in the accomplishment of LbL-based materials for TENG devices are reviewed, and the potential for energy harvesting devices reviewed so far is checked. The advantages of the TENG device fabricated by applying the LbL technology are discussed, and finally, the direction and perspective of this fabrication technology for the implementation of various ultra-thin TENGs are briefly presented.

Research Trends on Hydrocarbon-Based Polymer Electrolyte Membranes for Direct Methanol Fuel Cell Applications (직접 메탄올 연료전지용 탄화수소계 고분자 전해질 막 연구개발 동향)

  • Yu-Gyeong Jeong;Dajeong Lee;Kihyun Kim
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.325-343
    • /
    • 2023
  • Direct methanol fuel cells (DMFCs) have been attracting attention as energy conversion devices that can directly supply methanol liquid fuel without a fuel reforming process. The commercial polymer electrolyte membranes (PEMs) currently applied to DMFC are perfluorosulfonic acid ionomer-based PEMs, which exhibit high proton conductivity and physicochemical stability during the operation. However, problems such as high methanol permeability and environmental pollutants generated during decomposition require the development of PEMs for DMFCs using novel ionomers. Recently, studies have been reported to develop PEMs using hydrocarbon-based ionomers that exhibit low fuel permeability and high physicochemical stability. This review introduces the following studies on hydrocarbon-based PEMs for DMFC applications: 1) synthesis of grafting copolymers that exhibit distinct hydrophilic/hydrophobic phase-separated structure to improve both proton conductivity and methanol selectivity, 2) introduction of cross-linked structure during PEM fabrication to reduce the methanol permeability and improve dimensional stability, and 3) incorporation of organic/inorganic composites or reinforcing substrates to develop reinforced composite membranes showing improved PEM performances and durability.

The Development of a textile material for transportation through the companies cooperation linking (수송용 섬유소재산업 글로벌경쟁력강화 초광역벨트 연계기술개발)

  • Park, S.M.;Jeon, S.K.;Kim, M.S.;Yoon, J.G.;Kim, M.S.
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.17-17
    • /
    • 2012
  • 수송용 섬유소재는 자동차, 항공기 또는 선박 등의 교통 및 운송 분야에 기여하는 사용되는 섬유소재를 말하며, 내장재, 각종 호스류, 벨트류, 타이어, 안전용품, 필터류 등을 포함하고 일반적으로 섬유, 발포체, 고무, 플라스틱, 접착제 등 유기소재가 결합된 복합체이다. 기존 섬유기술의 혁신과 더불어 IT, NT, BT, ET 등 첨단 기술과의 융합에 의한 고성능 극한 슈퍼섬유, 나노 복합섬유 등의 신소재를 개발하여 산업 전반에서 플라스틱의 금속소재 대체수요를 증가시키고 산업자재의 고성능화, 고기능화, 다양화를 이루기 위해 다양한 노력이 진행하고 있다. 현재 수송용 섬유소재 산업은 기술의 연결고리가 부족하며, 선도기업 및 원천기술이 부족하며, 자동차용 섬유부품소재 관련 기업의 역량도 부족한 실정이다. 이에 광역경제권 연계협력사업을 통해 생산기반의 대경권(대구경북)과 수요중심의 동남권(부산경남)의 네트워크를 강화하여 완성품 업체 및 수요기업과의 네트워킹을 강화하고자 한다. 따라서 본 연구에서 수송용 섬유소재개발, 수송용 친환경 oam-skin 일체형 표피재 개발, 고속성형 복합소재 및 수송용 경량부품 개발, 초경량 고내열 고강도 섬유활용 하이브리드 wire & cable 개발 등 수송용 섬유소재를 개발하고, 또한 수송용 섬유소재의 생산-수요 연계를 통한 투자활성화, 기술개발, 소재 산업 육성을 강화하여, 산학연네트워크구축, 지역 간 협력 및 국제적 협력, 생산-수요기반의 연계협력시스템을 활용한 자립형 수송용 소재 공급기지 완비하는 데 목적이 있다.

  • PDF

Development of Nanoenzymes for the Production of Glucose from Seaweed and Various Polysaccharide (해조류 및 다당류로부터 포도당 생산을 위한 나노효소 개발 및 특성)

  • Jin, Lie-Hua;Lee, Jung-Heon
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.453-458
    • /
    • 2010
  • The magnetically separable polyaniline nanofiber enzymes were developed for the recycle of enzyme and enhanced enzyme stability. The stability of enzyme was maintained over 90% for 8 days under room temperature and vigorous shaking conditions (200 rpm). The residual activity of immobilized enzyme was over 60% after 8 days incubation at $55^{\circ}C$. Glucose was produced from various polysaccharides, agarose, curdlan, cellulose, and sea weed, using magnetically separable immobilized enzyme. Glucose production rate with curdlan was 1.2 g/(l h) and showed high decomposition rate due to high mass transfer. After 10 times recycle, the residual activity of immobilized enzyme was over 75%. 1 g/L of glucose was produced with 5 mg of immobilized enzymes.

Facile Preparation of Nanoporous Silica Aerogel Granules (나노다공성 실리카 에어로겔 과립의 간단 제조)

  • Kim, Nam Hyun;Hwang, Ha Soo;Park, In
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.209-213
    • /
    • 2011
  • Hydrophobic silica aerogel beads with low thermal conductivity and high porosity were prepared using a cost-effective sodium silicate as a silica source via an ambient-pressure drying process. Monolithic wet gels were first prepared by adjusting pH (~5) of a diluted sodium silicate solution. The silica aerogel beads (0.5~20 mm) were manufactured by breaking the wet gel monoliths under a simultaneous solvent exchange/surface modification process and an ambient-pressure drying process without using co-precursors or templates. Dried silica aerogel beads exhibit a comparable porosity ($593m^2/g$ of surface area, 34.9 nm of pore size, and $4.4cm^3/g$ of pore volume) to that of the aerogel powder prepared in the same conditions. Thermal conductivity of the silica aerogel beads (19.8 mW/mK at $20^{\circ}C$) is also identical to the aerogel powder.

Nano-Morphology Design of Nickel Cobalt Hydroxide on Nickel Foam for High-Performance Energy Storage Devices (고성능 에너지 저장 소자를 위한 니켈 구조체에 담지된 니켈 코발트 수산화물의 나노 형상 제어)

  • Shin, Dong-Yo;Yoon, Jongcheon;Ha, Cheol Woo
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.710-718
    • /
    • 2021
  • Recently, due to high theoretical capacitance and excellent ion diffusion rate caused by the 2D layered crystal structure, transition metal hydroxides (TMHs) have generated considerable attention as active materials in supercapacitors (or electrochemical capacitors). However, TMHs should be designed using morphological or structural modification if they are to be used as active materials in supercapacitors, because they have insulation properties that induce low charge transfer rate. This study aims to modify the morphological structure for high cycling stability and fast charge storage kinetics of TMHs through the use of nickel cobalt hydroxide [NiCo(OH)2] decorated on nickel foam. Among the samples used, needle-like NiCo(OH)2 decorated on nickel foam offers a high specific capacitance (1110.9 F/g at current density of 0.5 A/g) with good rate capability (1110.9 - 746.7 F/g at current densities of 0.5 - 10.0 A/g). Moreover, at a high current density (10.0 A/g), a remarkable capacitance (713.8 F/g) and capacitance retention of 95.6% after 5000 cycles are noted. These results are attributed to high charge storage sites of needle-like NiCo(OH)2 and uniformly grown NiCo(OH)2 on nickel foam surface.

Hydrogen sensor using Pt-loaded porous In2O3 nanoparticle structures (백금 담지 다공성 산화인듐 나노입자 구조를 이용한 수소센서)

  • Sung Do Yun;Yoon Myung;Chan Woong Na
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.6
    • /
    • pp.420-426
    • /
    • 2023
  • We prepared a highly sensitive hydrogen (H2) sensor based on Indium oxides (In2O3) porous nanoparticles (NPs) loaded with Platinum (Pt) nanoparticle in the range of 1.6~5.7 at.%. In2O3 NPs were fabricated by microwave irradiation method, and decorations of Pt nanoparticles were performed by electroless plating on In2O3 NPs. Crystal structures, morphologies, and chemical information on Pt-loaded In2O3 NPs were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of In2O3 NPs was investigated over a low concentration range of 5 ppm of H2 at 150-300 ℃ working temperatures. The results showed that the H2 response greatly increased with decreasing sensing temperature. The H2 response of Pt loaded porous In2O3 NPs is higher than that of pristine In2O3 NPs. H2 gas selectivity and high sensitivity was explained by the extension of the electron depletion layer and catalytic effect. Pt loaded porous In2O3 NPs sensor can be a robust manner for achieving enhanced gas selectivity and sensitivity for the detection of H2.

Highly Sensitive sub-ppm level Trimethylamine Gas Sensor Based on Porous CuO/In2O3 Nanostructures (고감도 sub-ppm 수준의 다공성 CuO/In2O3나노구조 트리메틸아민 가스센서)

  • Sung Do Yun;Yoon Myung;Chan Woong Na
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.305-309
    • /
    • 2024
  • Trimethylamine (TMA) is an organic amine gas that serves as a key indicator for evaluating the freshness of seafood. We synthesized a highly sensitive trimethylamine (TMA) sensor based on porous indium oxide (In2O3) nanoparticles (NPs) loaded with CuO in the range of 6.7 to 28.4 at.%. CuO was loaded by hydrazine reduction onto as prepared In2O3 NPs using the microwave irradiation method. Crystal structures, morphologies, and chemical composition of CuO/In2O3 nanostructures (NSs) were characterized by X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and inductively coupled plasma mass spectrometry. The response of the 23.8 at.% CuO/In2O3 to 2.5 ppm TMA at 325℃ was 5.7, which was 2.8 times higher than that of porous In2O3 NPs. The high sensitivity and selective detection of TMA were attributed to electronic interactions between CuO and In2O3 and the high catalytic activity of CuO to TMA. Altogether, this CuO/In2O3 sensor could be used in the future to detect low concentrations of TMA, thereby aiding in the storage and distribution of marine food resources.

Step-by-Step Growth Factors for Technology-Based Ventures: A Case Study of Advanced Nano Products Co. Ltd (기술기반 벤처기업의 단계별 성장요인: (주)나노신소재 사례 중심으로)

  • Jeong, Chanwoo;Lee, Wonil
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.6
    • /
    • pp.85-105
    • /
    • 2021
  • In this study, a case study was conducted on Advanced Nano Products Co.,Ltd, a company that was established in 2000 and has the core technology to produce and commercialize nano materials and ultrafine nano powders based on nano technology. Deviating from the general case study, a case study analysis frame was set based on the theory of technology management and industry-university cooperation theory, and cases were analyzed. In this case study, Advanced Nano Products Co.,Ltd. was analyzed from two analytical perspectives: the establishment of a Management Of Technology system within the company and the Industry-Academic Cooperation activity. Based on this theoretical-based analysis framework, company visit interviews and related data research and analysis were conducted. As a result of the study of the case company, it was possible to derive how the technology management and industry-university cooperation affect the growth stage of the company as follows. First, the strategic use of technology management is an important factor in strengthening the competitive advantage and core competencies of venture companies, and for survival and growth of startups in the early stages. Second, strategic use of technology management and patents and establishment of a patent management system are a part of business strategy and play a pivotal role in corporate performance. Third, the human and material infrastructure of universities affects the growth of companies in the early stage of start-up, and the high utilization of industry-university cooperation promotes the growth of companies. Fourth, continuous industry-academic cooperation activities in the growth and maturity stages of a company's growth stage are the basis for activating external exchanges and building networks. Lastly, technology management and industry-university cooperation were found to be growth factors for each growth stage of a company. In order for a company to develop continuously from the start-up to the growth and maturity stages, it is necessary to establish a technology management system from the beginning and promote strategic technology management activities. In addition, it can be said that it is important to carry out various industry-academic cooperation activities outside the company. As a result of the case analysis, it was found that Advanced Nano Products Co.,Ltd, which performed these two major activities well, overcame the crisis step by step and continued to grow until now. This study shows how the use of technology management and industry-academic cooperation creates value in each growth stage of technology-based venture companies. In addition, its active use will play a big role in the growth of other venture companies. The results of this case study can be a valid reference for growth research of technology start-up venture companies and related field application and utilization.