• Title/Summary/Keyword: 나노분말 합성

Search Result 383, Processing Time 0.024 seconds

Preparation of Quasi-nano-sized of Ba-Zn Ferrites Powders by Self-Propagating High Temperature Synthesis and Mechanical Milling (고온 자전 연소합성법과 기계적 미분에 의한 준나노 크기의 Ba-Zn Ferrite 분말의 제조)

  • Choi, Kyung-Suk;Lee, Jong-Jae;Kim, Hyuk-Don;Choi, Yong;Lee, Sang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.625-628
    • /
    • 2008
  • Ba-Zn ferrite powders for electromagnetic insulator were synthesized by self-propagating high-temperature synthesis(SHS) with a reaction of $xBaO_2+(1-x)ZnO+0.5Fe_2O_3+Fe{\rightarrow}Ba_xZn_{1-x}Fe_2O_4$. In this study, phase indentification of SHS products was carried out by using x-ray diffractometry and quasi-nano sized Ba-Zn powders were prepared by a pulverizing process. SHS mechanism was studied by thermodynamical analysis about oxidation reaction among $BaO_2,\;ZnO,\;Fe_2O_3$, and Fe. As oxygen pressure increases from 0.25 MPa to 1.0 MPa, the SHS reactions occur well and make clearly the SHS products. X-ray analysis shows that final SHS products formed with the ratio of $BaO_2/ZnO$ of 0.25, 1.0 and 4.0, are mainly $Ba_xZn_{1-x}Fe_2O_4$. Based on thermodynamical evaluation, the heat of formation increases in the order of $ZnFe_2O_4,\;BaFe_2O_4$, and $Ba_xZn_{1-x}Fe_2O_4$. This supports that $Ba_xZn_{1-x}Fe_2O_4$ phase is predominately formed during SHS reaction. The SHS reactions to form $Ba_xZn_{1-x}Fe_2O_4$ depends on oxygen partial pressure, and the heat of formation during the SHS reaction. The SHS reactions tends to occur well with increasing the oxygen partial pressure and BaO2/ZnO ratio in the reactants This means that the SHS reaction for the formation of Ba-Zn ferrite includes the reduction of BaO2/ZnO and the oxidation of Fe. $Ba_xZn_{1-x}Fe_2O_4$ powders after pulverizing is agglomeratedwith a size of about $50{\mu}m$, in which quasi-nano sized particles with about 300nm are present.

Fabrication and Mechanical Properties of Nanostructured Al2O3-MgSiO3-SiO2 Composites Synthesized by Pulsed Current Activated Combustion of Mechanically Activated Powder (기계적 활성화된 분말로부터 펄스전류활성 연소합성에 의한 나노구조 Al2O3-MgSiO3-SiO2복합재료 제조 및 기계적 특성)

  • Shon, In-Jin;Kang, Hyun-Su;Doh, Jung-Mann;Yoon, Jin-Kook
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.565-569
    • /
    • 2011
  • Nanopowders of MgO, $Al_2O_3$ and $SiO_2$ were made by high-energy ball milling. The fast sintering of nanostructured $Al_2O_3-MgSiO_3-SiO_2$ composites was investigated from mechanically activated powders of MgO, $Al_2O_3$ and $SiO_2$ by a pulsed-current activated sintering process. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties; in particular greater strength, hardness, excellent ductility and toughness. Highly dense nanostructured $Al_2O_3- MgSiO_3-SiO_2$ composites were produced with simultaneous application of 80 MPa and pulsed output current of 2800A within 2 minutes. The sintering behavior, grain size and mechanical properties of $Al_2O_3-MgSiO_3-SiO_2$ composites were investigated.

Mechanical Properties and Fabrication of Nanostructured Mg2SiO4-MgAl2O4 Composites by High-Frequency Induction Heated Combustion (기계적 활성화된 분말로부터 고주파유도 가열 연소합성에 의한 나노구조 Mg2SiO4-MgAl2O4 복합재료 제조 및 기계적 특성)

  • Shon, In-Jin;Kang, Hyun-Su;Hong, Kyung-Tae;Doh, Jung-Mann;Yoon, Jin-Kook
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.614-618
    • /
    • 2011
  • Nanopowders of MgO, $Al_2O_3$ and $SiO_2$ were made by high energy ball milling. The rapid sintering of nanostructured $MgAl_2O_4-Mg_2SiO_4$ composites was investigated by a high-frequency induction heating sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition of grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. Highly dense nanostructured $MgAl_2O_4-Mg_2SiO_4$ composites were produced with simultaneous application of 80MPa pressure and induced output current of total power capacity (15 kW) within 2min. The sintering behavior, gain size and mechanical properties of $MgAl_2O_4-Mg_2SiO_4$ composites were investigated.

Mechanical Properties and Fabrication of Nanostructured Ti3Al-Al2O3 Composite from Mechanically Synthesized Powders by Pulsed Current Activated Sintering (기계적 합성된 분말로부터 펄스전류활성 소결에 의한 나노구조 Ti3Al-Al2O3 복합재료 제조 및 기계적 특성)

  • Shon, In-Jin;Wang, Hee-Ji;Suh, Chang-Yul;Cho, Sung-Wook;Kim, Wonbaek
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.374-379
    • /
    • 2011
  • Nano-powders of $Ti_3Al$ and $2Al_2O_3$ were synthesized from $3TiO_2$ and 5Al powders by high energy ball milling. A nanocrystalline $Al_2O_3$ reinforced composite was consolidated by pulsed current activated sintering within 2 minutes from mechanochemically synthesized powders of $Al_2O_3$ and $Ti_3Al$. Nanocrystalline materials, have received much attention as advanced engineering materials due to their improved physical and mechanical properties. The relative density of the composite was 99.5%. The average obtained hardness and fracture toughness values were 1510 kg/$mm^2$ and $9\;MPa{\cdot}m^{1/2}$, respectively.

Mechanical Properties and Fabrication of Nanostructured 1.5TiAl-Al2O3 Composite by Pulsed Current Activated Sintering (기계적 합성된 분말로부터 펄스전류활성 소결에 의한 나노구조 1.5TiAl-Al2O3 복합재료 제조 및 기계적 특성)

  • Kim, Won-Baek;Wang, Hee-Ji;Roh, Ki-Min;Cho, Sung-Wook;Lim, Jae-Won;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.310-315
    • /
    • 2012
  • Nano-powders of 1.5TiAl and $Al_2O_3$ were synthesized from $1.5TiO_2$ and 3Al powders by high energy ball milling. Nanocrystalline $Al_2O_3$ reinforced composite was consolidated by pulsed current activated sintering within 2 minutes from mechanochemically synthesized powders of $Al_2O_3$ and 1.5TiAl. The relative density of the composite was 99.5%. The average hardness and fracture toughness values obtained were $1250kg/mm^2$ and $10MPa{\cdot}m^{1/2}$, respectively.

Hydrothermal Synthesis and Structural Characterization of x mol% Calcia-Stabilized ZrO2 Nanopowders (x mol% 칼시아-안정화 지르코니아 나노분말의 수열합성 및 구조적 특성평가)

  • Ryu, Je-Hyeok;Moon, Jung-In;Park, Yeon-Kyung;Nguyen, Tuan Dung;Song, Jeong-Hwan;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.220-226
    • /
    • 2012
  • Pure zirconia and $x$ mol% calcia partially stabilized zirconia ($x$ = 1.5, 3, and 8) nanopowders were synthesized by hydrothermal method with various reaction temperatures for 24 hrs. The precipitated precursor of pure zirconia and $x$ mol% calcia doped zirconia was prepared by adding $NH_4OH$ to starting solutions; resulting sample was then put into an autoclave reactor. The optimal experimental conditions, such as reaction temperatures and times and amounts of stabilizer CaO, were carefully studied. The synthesized $ZrO_2$ and $x$ mol% CaO-$ZrO_2$ ($x$ = 1.5, 3, and 8) powders were characterized by XRD, SEM, TG-DTA, and Raman spectroscopy. When the hydrothermal temperature was as low as $160^{\circ}C$, pure $ZrO_2$ and $x$ mol% CaO-$ZrO_2$ ($x$ = 1.5 and 3) powders were identified as a mixture of monoclinic and tetragonal phases. However, a stable tetragonal phase of zirconia was observed in the 8 mol% calcia doped zirconia nanopowder at hydrothermal temperature above $160^{\circ}C$. To observe the phase transition, the 3 mol% CaO-$ZrO_2$ and 8 mol% CaO-$ZrO_2$ nanopowders were heat treated from 600 to $1000^{\circ}C$ for 2h. The 3 mol% CaO-$ZrO_2$ heat treated at above $1000^{\circ}C$ was found to undergo a complete phase transition from mixture phase to monoclinic phase. However, the 8 mol% calcia doped zirconia appeared in the stable tetragonal phase after heat treatment. The result of this study therefore should be considered as the preparation of 8 mol% CaO-$ZrO_2$ nanopowders via the hydrothermal method.

The Magnetic Properties with the Variation of Sintering Temperature and Microwave Absorbing Characteristics of NiCoZn Ferrite Composite Prepared by Co-precipitation Method (공침법으로 제조한 NiCoZn Ferrite의 조성 및 소결온도에 따른 자기적 특성 및 전파흡수특성)

  • Kim, Moon-Suk;Min, Eui-Hong;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.120-125
    • /
    • 2008
  • In this study, NiCoZn ferrites with the variation of sintering temperature and chemical composition were prepared by the coprecipitation. Microstructures Crystal structure of NiCoZn ferrites were analyzed by XRD and their electric magnetic characteristics were analyzed by LCR meter and their morphology observed by SEM. We identified that these powders have a typical NiCoZn spinel structure and nanoparticles average size of 40 nm. The impurity, the initial permeability and the Q factor value are the lowest of sintered NiCoZn ferrite at $1250^{\circ}C$. Also, we measured S-parameter for $(Ni_{0.4}Co_{0.1}Zn_{0.5})Fe_2O_4$ which showed a maximum reflection loss of -3.1 dB at 6 GHz for the 2 mm thick sample. From this result, we found that the NiCoZn ferrite can be used in ferrite microwave-absorbing application at a higher frequency region (> 6 GHz).

Synthesis, Structure and Characterization of Nd2XCd2-3XSiO4 (0.01≤X≤0.21) Solid-Solutions (Nd2XCd2-3XSiO4 (0.01≤X≤0.21) 고용체의 합성과 구조 규명)

  • Ramesh, S.;Das, B.B.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.502-508
    • /
    • 2011
  • Synthesis of $Nd_{2x}Cd_{2-3x}SiO_4$ ($0.01{\leq}x{\leq}0.21$) [S1-S3: x=0.01, 0.11 and 0.21] solid solutions were prepared by solgel method. Powder x-ray diffraction (XRD) results show monoclinic unit cell with space group P21/m. The average crystallite sizes are found to be 20 to 45 nm. The Scanning Electron Microcopy (SEM) images show morphology of the sample is in globular nature. The energy dispersive analysis of x-rays (EDX) and X-ray mapping results confirmed that all the constituent elements of the composites were present and that were distributed in uniformly. The optical absorption band at ~750 nm was due to $^4I_{9/2}{\rightarrow}^4F_{7/2}+^4S_{3/2}$ transition optically active $Nd^{3+}$ ions. Electron Paramagnetic Resonance (EPR) lineshapes of S1-S3 at 10, 40, 77 and 300 K show a broad unresolved isotropic lineshapes were observed due to rapid spin lattice relaxation of $Nd^{3+}$.

Status And Perspectives of Ultra-Lightweight Silica Aerogel Superinsulation Materials (초경량 실리카 에어로젤 초단열재의 현황 및 전망)

  • Dong Jin, Suh
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.301-308
    • /
    • 2022
  • Since nanoporous silica aerogel was first synthesized in 1931, its potential as an ultra-lightweight superinsulation material has been steadily attracting attention. Silica aerogel is the best thermal insulation material to date. However, the potential applications of this lightweight material have so far been hindered by its inherent fragibility and brittleness arising from its ultra-porous nature. Although the monolithic form of silica aerogel has the best ultra-lightweight superinsulation properties, it cannot be used in this form. Instead it is used in the form of powders, particles, and blankets. However, these forms still have shortcomings. Silica aerogel is most widely applied in the form of a fiber-reinforced aerogel blanket, but this form is likely to generate dust when handled. Although silica aerogel particles have been proven to be non-toxic to humans, dust formation remains a major barrier to the widespread application of silica aerogel blankets. This paper will investigate the unique properties of silica aerogel and determine what fields it can be used in or potentially be used in due to its unique properties. In addition, we will review the important advances in silica aerogel synthesis technology and its commercialization so far, and then consider the problems that exist for its widespread commercialization in the future and how to overcome them.

Experimental Study on the Mitigation of Harmful Algal Blooms by Mono-Minerals (환경친화성 단일 광물질에 의한 적조구제 실험)

  • 장영남;채수천;배인국;박맹언;김필근;김선옥
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.557-561
    • /
    • 2003
  • It is important to find out a new material having high removal efficiency for the harmful algal blooms because the dispersion of Hwangto in a large amount to the sea water may bring some ecologically unfavorable problems. For this purpose, the efficiency of several natural and synthetic mineral species for the mitigation of algal blooms was measured. The mixing ratio of monominerals and the sea water with 3,000∼5,000 cells/$m\ell$ of Cochlodinium polykrikoides was 10 g/${\ell}$ and the removal ratio was measured by counting the living cells after the dispersion time of 10, 30 and 60 min., respectively. According to the experimental results, the removal ratio by illite, kaolinite, montmonmorillonite, red mud, Na-A type of zeolite ranged 84-92% after 1hr of contact time, which is comparable to that of Hwangto. The size of above monominerals ranged 3∼50${\mu}m$. Meanwhile, the amorphose material and hematite with the size of 50∼100 nm showed excellent removal ratio of more than 99% after 30min. of dispersion. The results of the study showed that the removal ratio was not related to the chemical composition and pH of the minerals applied but to the grain size. The experimental results strongly suggest that the main mitigation mechanism would be the contact and coagulation.