• Title/Summary/Keyword: 나노분말 합성

Search Result 383, Processing Time 0.026 seconds

Low Temperature Synthesis of the Microwave Dielectric (Pb0.5Ca0.5)(Fe0.5Nb0.5)O3 Nano Powders by the Metal-citrate Process (Metal-citrate Process를 이용한 마이크로파 유전체용 (Pb0.5Ca0.5)(Fe0.5Nb0.5)O3 나노 분말의 저온 합성)

  • Lee, Dong-Wook;Won, Jong-Han;Shim, Kwang-Bo;Kang, Seung-Gu;Hyun, Boo-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1113-1118
    • /
    • 2002
  • Nano sized $(Pb_{0.5}Ca_{0.5})(Fe_{0.5}Nb_{0.5})O_3$ (PCFN) powders with the stoichiometric composition and the uniform size distribution were successfully synthesized by the metal-citrate process through the calcination of the polymeric precursor which consisted of the metal ions and the organic network. The crystallization of the initial amorphous powders began at $400{\circ}$ and completed at $700{\circ}$. The pyrochlore phase was detected caused by the dissociation of PbO above $900{\circ}$. Single phase perovskite PCFN powders with 40 nm size and uniform shape were obtained through the calcination at $700{\circ}$.

Synthesis of Alumina Nano Particles by PAA Gel Method from Kaolin (카올린으로부터 PAA Gel법에 의한 알루미나 나노 입자의 합성)

  • 김지경;이상근;신준식;홍성수;박성수;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • Non-aggregated nanoscale $\alpha$-Al$_2$O$_3$ powders were prepared successfully by polyacrylamine (PAA) gel method. The method was very simple and polymer network inhibited the aggregate of $\alpha$-Al$_2$O$_3$ powders. In this investigation, nanoparticles of $\alpha$-Al$_2$O$_3$ with a diameter of about 8-15 nm were fabricated by calcining the gel precusors with various concentrations of aluminum sulfate, acrylamide and N,N'-methylene-bis-acrylamide (BIS) in air at 110$0^{\circ}C$ for 2 h. The molar ratio of aluminum sulfate to acrylamide did not have any influence on the size of particles. On the other hand, as the molar ratio of BIS to acrylamide increased, the size of nanoparticles decreased.

Low temperature synthesis of ZnO nanopowders by the polymerized complex method (착체중합법을 이용한 ZnO 나노분말의 저온합성)

  • 권용재;김경훈;임창성;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.5
    • /
    • pp.229-233
    • /
    • 2002
  • Nano-sized ZnO particles were successfully synthesized at low temperatures by a polymerized complex method via an organochemical route. The polymeric precursors could be prepared using Zn nitrate hexahydrate and a mixed solution of citric acid and ethylene glycol as a chelating agent and a reaction medium. The polymeric precursors were calcined at temperatures from 300 to $700^{\circ}C$ for 3 h, and evaluated for degree of crystallization process, thermal decomposition, surface morphology and crystallite size. The thermal decomposition and crystallization process were analyzed by TG-DTA, FI-IR and XRD. The morphology and crystallite size of the calcined particles were evaluated by scanning electron microscopy (SEM), transmittance electron microscopy (TEM) and Scherrer's equation. Crystallization of the ZnO particles was detected at $300^{\circ}C$ and entirely completed above $400^{\circ}C$. Particles calcined between 400 and $700^{\circ}C$ showed a uniform size distribution with a round shape. The average particle sizes calcined at $400^{\circ}C$ for 3 hour were 30~40nm showing an ordinary tendency to increase with the temperatures.