• 제목/요약/키워드: 끝단 와류

Search Result 30, Processing Time 0.031 seconds

A study on the effect of solid particles to the trailing edge vortex of turbine blade (터빈 블레이드의 끝단와류 유동에 고체 입자가 미치는 영향에 대한 연구)

  • 박기철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.41-41
    • /
    • 2000
  • 터어빈 블레이드의 경우 제작 또는 설계상의 이유로 뭉툭한 끝단을 가질 수밖에 없게 되는데, 이로 인하여 같은 터보기계인 압축기 블레이드의 경우와는 다르게 블레이드 끝단에서 끝단 와류(Trailing edge vortex)가 발생하게 된다. 이 와류는 블레이드의 손실 증가, 고주파 음파의 생성, 국부적으로 매우 큰 열 전달 및 에너지분산 등 터빈 블레이드의 성능에 좋지 못한 영향을 미치게 된다. 또한 와류와 충격파와의 간섭효과 둥이 존재하는 경우에는 매우 복잡한 유동장을 형성하며 심한 유동 구배가 존재하게 되므로 고해상도의 수치해석 방법이 아니고서는 이를 수치적으로 해석하기가 쉽지 않다.(중략)

  • PDF

NACA단면의 끝단 와방출에 대한 연구

  • Lee, Chang-U;O, U-Jun;Son, Chang-Bae;Kim, Ok-Seok;Lee, Gyeong-U
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.48-49
    • /
    • 2010
  • 선박의 러더하부 끝단에서는 선회에 따른 와류로 인하여 선회력 및 후류유동에 변화를 초래한다. 이를 관측하기 위해 NACA단면 형상의 몰수체를 영각과 관측단면을 변화시키며 $Re=2.0{\times}10^4$에서 실험을 통한 순간유동장을 계측 후 그 영향을 조사하였다. 계측된 결과는 상호상관 PIV기법을 이용 Naca단면 끝단에서의 2차원 유동특성을 알아보기 위하여 상호 비교하였다. NACA단면은 영각변화에 따라 후류유동에 영향을 미친다. 동일유입유속에서 영각이 증가함에 따라 관찰단면이 중앙으로 갈수록 와류 규모가 확대되는 것을 관찰할 수 있었다.

  • PDF

Verification of Hovering Rotor Analysis Code Using Overlapped Grid (중첩격자를 이용한 제자리비행 로터 해석 코드의 수치특성)

  • Kim, Jee-Woong;Park, Soo-Hyung;Yu, Yung-Hoon;Kim, Eu-Gene;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.719-727
    • /
    • 2008
  • A 3-D compressible Navier-Stokes solver using overlapped grids is developed to predict a flow-field around a hovering rotor. The flow solver is verified by a parametric study with the grid spacing of wake grid, spatial accuracy and turbulence model. Computations are performed with different Chimera grid systems. Computational results are compared with the experimental data of Caradonna et al. for both blade loading and the tip vortex behavior. Numerical results show good agreements with experiments for the distribution of surface pressure and tip vortex behavior. Pressure distributions over the blade have marginal differences for different numerical methods, whereas large discrepancies are seen in the prediction of the wake behavior. Results unexpectedly show that the vortex strength from an automated cut-paste Chimera grid is weaker than that from the conventional Chimera grid.

A study on the effect of agitation speeds for the optimization of manufacturing process of autonomic microcapsules (자가치료용 마이크로캡슐 제조공정 최적화를 위한 교반속도 영향 연구)

  • Yun, Seong-Ho;Kim, Sang-Deok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.51-59
    • /
    • 2006
  • The physical characteristics of autonomic microcapsules manufactured with various agitation speeds in a stirred tank were observed experimentally by a particle size analyzer and an optical microscope. The flow characteristics in a stirred tank were also investigated through a 3-dimensional numerical simulation to understand the manufacturing process of autonomic microcapsules. According to the results, we found that the agitation speed was the important factor to determine the sizes of microcapsules. The impeller-induced flow allowed the jet and tip-vortex pair components in the mixed fluid of a stirred tank. The vorticity around the blades in the impeller was increased as increasing the agitation speed. In addition, the size of autonomic microcapsules was strongly affected on the small scale mixing pattern such as a tip-vortex pair.

Application of Flow Control Devices for Smart Unmanned Aerial Vehicle (SUAV) (스마트무인기에 적용한 유동제어 장치)

  • Chung, Jin-Deog;Hong, Dan-Bi
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.197-206
    • /
    • 2009
  • To improve the aerodynamic efficiency of Smart Unmanned Aerial Vehicle (SUAV), vortex generators and flow fence are applied on the surface and the tip of wing. The initially applied vortex generator increased maximum lift coefficient and delayed the stall angle while it produced excessive increase in drag coefficient. It turns out reduction of the airplane's the lift/drag ratio. The new vortex generators with L-shape and two different height, 3mm and 5mm, were used to TR-S4 configuration to maintain the desired level of maximum lift coefficient and drag coefficient. Flow fence was also applied at the end of both wing tip to reduce the interaction between nacelle and wing when nacelle tilting angles are large enough and produce flow separation. To examine the effect of flow fence, flow visualization and force and moment measurements were done. The variation of the aerodynamic characteristics of SUAV after applying flow control devices are summarized.

  • PDF

플라잉디스크의 단면 형상에 따른 공력 특성 연구

  • Kim, Tae-Uk;Park, Da-Un
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.628-631
    • /
    • 2016
  • 본 연구에서는 플라잉디스크의 윗면 곡률과 끝단두께에 따른 공력특성의 변화 및 유동 흐름을 EDISON_CFD를 통해 해석하고자 한다. 플라잉디스크는 받음각이 증가할수록 윗면 표면에서는 박리 거품이 발생하게 되고 아랫면에서 윗면으로 올라 갈려는 유동의 흐름이 발생하게 되어 뒷전과 후류에서 거대한 박리 거품이 발생하게 되어 공력특성 및 유동흐름에 큰 변화를 주게 된다. 총 5가지의 형상에 대해서 받음각을 $0^{\circ}{\sim}25^{\circ}$까지 마하수 0.0588, 해석모델은 KFLOW에서 k-w SST를 레이놀즈수 $3.78{\times}10^5$을 조건으로 각 형상의 공력특성과 유동의 흐름의 비교를 분석하였다. 그 결과 윗면의 곡률이 증가 할수록 앞전박리가 활발해지고, 끝단두께가 두꺼워 질수록 뒷전박리가 활발해진다. 이로 인해 곡률은 완만할수록 두께는 얇을수록 양력계수와 실속각을 증가 시킬 수 있다.

  • PDF

Aerodynamic Effect on the Flow Field under the Wing with Varying Aspect Ratio (가로세로비에 따른 날개 하부 유동장의 공기역학적 영향)

  • Cho, Cheolyoung;Park, Jongho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2016
  • In this paper, aerodynamic effects on the flow field under the wing with varying aspect ratio were investigated by measuring pressures on the lower surface of wing and analysing velocity components using Particle Image Velocimetry at Reynolds numbers of $1.384{\times}10^5$ and $2.306{\times}10^5$. In case of aspect ratio 4.8 which keeps the wing tip at a distance of 80% chord length from the pylon, the vortex from the wing tip influenced the flow field under the wing by reducing static pressures on the lower surface and increasing the velocity in proximity of the wing tip. Throughout the results, it is observed that aerodynamic effects of wing tip on the flow field around pylon under wing become insignificant as the aspect ratio increases.

A Study on the Performance of the Wing In Ground Effect by a Vortex Lattice Method (와류 격자법에 의한 지면효과익의 성능 연구)

  • Jeong, Gwang-Hyo;Jang, Jong-Hui;Jeon, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.87-96
    • /
    • 1998
  • A numerical simulation was done to investigate the performance of thin wings in close vicinity to ground. The simulation is based on Vortex Lattice Method(VLM) and freely deforming wake elements are taken into account for a sudden acceleration case. The parameters covered in the simulation are angle of attack, aspect ratio, ground clearance, sweep angle and taper ratio. In addition, the effect of the wing endplate on the ground effect is included. The wing sections used for present computations are uncambered, cambered and S-types. The present computational results are compared with other published computational results and experimental data.

  • PDF

Wake Structure of Tip Vortex Generated by a Model Rotor Blade of NACA0015 Airfoil Section (NACA0015익형을 가지는 로터 깃 끝와류의 후류유동구조)

  • Sohn, Yong-Joon;Kim, Jeong-Hyun;Han, Yong-Oun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.210-217
    • /
    • 2011
  • Evolution of tip vortex generated by a model rotor blade which has a symmetric blade section has been investigated by use of the laser doppler anemometry. Swirl and axial velocity components of tip vortex were measured by the phase averaging technique within one revolution of a rotor blade. It was found that tip vortex becomes matured until 27 degrees and diffuses afterwards with diffusing rate becoming slower compared to the case of the asymmetric blade section, but the tip loss was expected to become more substantial. Swirl velocity components were well fit to n=2 model of Vatistas within measured wake ages, showing the self-similarity exists for the swirl velocity components. The axial components were followed with Gaussian profiles, but had much higher peak values than those of the symmetric blade section.

Surface pressure measurement on a wing of SWIM by using PSP (PSP를 이용한 항공기 형상 모형 날개 표면 압력 측정)

  • Jung, Hye-Jin;Kwon, Kijung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.337-345
    • /
    • 2008
  • this study, three dimensional surface pressure distributions of SWIM whose main wing has NACA4412 airfoil with NACA0012 flaps were experimentally measured by pressure sensitive paint. Surface pressures on suction and pressure sides of the wing were measured by changing an angle of attack at a Reynolds number of 3.1x105 in KARI 1m subsonic wind tunnel. The experimental results showed that as an angle of attack increases minimum pressure region on a suction side moved from the wing root to the tip and low pressure region around trailing edge of the wing tip which causes wing tip vortex was observed. Although low pressure region at the tip still observed at an angle of attack 15 deg., other area on a suction side showed flat pressure distribution in a span-wise direction. It was also observed that the mean value of pressure coefficients was about 0.077 through a comparison between PSP and pressure taps at the same test conditions.