• Title, Summary, Keyword: 꺾인균열

### An Integral Equation for Kinked Cracks in Finite Plane Bodies (유한영역에서의 꺾인균열 해석을 위한 적분방정식 적용 연구)

• 서욱환
• Transactions of the Korean Society of Mechanical Engineers
• /
• v.17 no.9
• /
• pp.2138-2144
• /
• 1993
• An integral equation representation of cracks was presented which differs from well-known "dislocation layer" representation. In this new representation, the equations are written in terms of the displacement discontinuity across the crack surfaces rather than derivatives of the displacement-discontinuity. It was shown in that the new technique is well-suited to the treatment of kinked cracks. In the present paper, this integral equation representation is coupled to the direct boundary-element method for the treatment of finite bodies containing kinked cracks. The method is demonstrated for two-dimensional finite domains but extension to three-dimensional problems would appear to be possible. The resulting approach is shown to be simple, yet very accurate. accurate.

### AN INTEGRAL EQUATION FOR KINKED CRACKS APPLIED TO MODE III IN FINITE PLANE BODIES (유한영역에서의 모드 III 꺾인균열 해석을 위한 적분방정식 적용연구)

• Sur, Ukhwan
• Journal of the Korean Society for Industrial and Applied Mathematics
• /
• v.2 no.1
• /
• pp.111-129
• /
• 1998
• An integral equation representation of cracks was presented, which differs from well-known "dislocation layer" representation. In this new representation, an integral equation representation of cracks was developed and coupled to the direct boundary-element method for treatment of cracks in plane finite bodies. The method was developed for in-plane(modes I and II) loadings only. In this paper, the method is formulated and applied to mode III problems involving smooth or kinked cracks in finite region. The results are compared to exact solutions where available and the method is shown to be very accurate despite of its simplicity.

### A Study on Mode III Kinked Crack Analysis Using Displacement-Discontinuity Method (변위 불연속 방법에 의한 모드 III 꺾인 균열 해석 연구)

• 서욱환
• Journal of Welding and Joining
• /
• v.18 no.4
• /
• pp.104-110
• /
• 2000
• An integral equation representation of cracks was presented, which differs from well-known "dislocation layer" representation. In this new representation, an integral equation representation of cracks was developed and coupled to the direct boundary-element method for treatment of cracks in plane finite bodies. The method was developed for in-plane (modes I and II) loadings only. In this paper, the method is formulated and applied to mode III problems involving smooth or kinked cracks in finite region. The results are compared to exact solutions where available and the method is shown to be very accurate despite of its simplicity.implicity.