• 제목/요약/키워드: 깊이 분리 합성곱

검색결과 2건 처리시간 0.016초

깊이별 분리 합성곱을 위한 다중 스레드 오버랩 시스톨릭 어레이 (Multithreaded and Overlapped Systolic Array for Depthwise Separable Convolution)

  • 윤종호;이승규;강석형
    • 반도체공학회 논문지
    • /
    • 제2권1호
    • /
    • pp.1-8
    • /
    • 2024
  • 깊이별 분리 합성곱 (Depthwise Separable Convolution)을 처리할 때, processing element (PE)의 저활용성은 시스톨릭 어레이 (SA)의 한계점 중 하나이다. 본 연구에서는 깊이별 합성곱의 처리량을 극대화하기 위한 새로운 SA 아키텍처를 제안한다. 더불어, 제안된 SA 는 깊이별 합성곱 계산 중에 유휴 PE 에서 후속 점별 합성곱 (pointwise convolution)을 수행하여 활용도를 증가시킨다. 모든 깊이별 합성곱 연산 후에는 모든 PE 를 활용하여 나머지 점별 합성곱 연산의 속도를 향상시킨다. 결과적으로, 제안된 128×128 SA 는 MobileNetV3 연산 시, 기본 SA 및 RiSA 와 비교하여 속도가 4.05 배, 1.75 배 향상되고, 에너지 소비량을 각각 66.7 %, 25.4 % 감소한다.

영상 데이터를 이용한 딥러닝 기반 작물 건강 상태 분류 연구 (Deep Learning-Based Plant Health State Classification Using Image Data)

  • 세이드 알리 에스거;이재환;알바로 푸엔테스;윤숙;박동선
    • 사물인터넷융복합논문지
    • /
    • 제10권4호
    • /
    • pp.43-53
    • /
    • 2024
  • 토마토에는 리코펜, β-카로틴 및 비타민 C와 같은 영양소가 풍부하고 세계적으로 많이 소비되는 채소 중 하나이다. 그러나 종종 생물학적 및 환경적 스트레스 요인으로 인해 수확량 손실이 발생한다. 전통적인 작물 건강 평가는 오류가 발생하기 쉽고 대규모 생산에 비효율적이다. 이러한 문제를 해결하기 위해 건강 상태에 대해 1~5로 주석을 메긴 토마토 전체 생육기간을 다루는 포괄적인 데이터 세트를 수집하였다. 우리는 Channel-wise attention과 Grouped convolution을 사용한 Attention-Enhanced DS-ResNet 아키텍처와 새로운 학습 기법을 제안한다. 우리의 모델은 5-fold 교차 검증을 사용하여 전체 정확도 80.2%를 달성하여 작물의 건강 상태를 정확하게 분류하는데 있어 견고성을 보여주었다.