최근 연구에서 모션 인식을 위해 여러 가지 인식 알고리즘을 사용하였다. 예를 들면, HMM, DTW, PCA 등의 기법을 이용하여 권투 모션을 인식하는 방법을 제시했다. 이러한 방법을 이용하기 위해서 연기자로부터 3차원 데이터를 얻기 위해 액티브 마커를 사용하여 손의 위치를 얻는다. 얻은 2차원 위치 정보는 다시 스테레오 기법을 이용하여 3차원 정보로 전환하여 구한다. 본 논문에서는 3차원 모션 데이터를 얻는 방법을 깊이 맵에 대한 알고리즘을 이용하여 구하였다. 그리고 3차원 위치 데이터 정보의 정확성 나타냈으며, 그리고 모션 동작에 대한 인식을 실험을 하였고, 그 실험 결과에 대해서 언급했다.
본 논문에서는 2D 동영상을 3D 입체영상으로 변환하기 위해서 머신러닝에 의한 학습기반의 객체분할과 객체의 optical flow를 활용하는 방법을 제안한다. 성공적인 3D 변환을 가능하게 하는 객체분할을 위해서, 객체의 칼라 및 텍스쳐 정보는 학습을 통해 반영하고 움직임이 있는 영역 위주로 객체분할을 수행할 수 있도록 optical flow를 도입한 새로운 에너지함수를 설계하도록 한다. 분할된 객체들에 대해 optical flow 크기에 따른 깊이맵을 추출하여 입체영상에 필요한 좌우 영상을 합성하여 생성하도록 한다. 제안한 기법으로 인해 효과적인 객체분할과 깊이맵을 생성하여 2D 동영상에서 3D 입체동영상으로 변환됨을 실험결과들이 보여준다.
깊이 카메라는 Time-of-Flight (TOF) 기술을 이용하여 장면 내 물체들의 거리 정보를 실시간으로 측정하며, 측정된 값은 깊이 영상으로 출력되어 양안식 혹은 다시점 카메라와 함께 장면의 고화질 깊이 맵을 제작하는 데 사용된다. 그러나 깊이 카메라 자체가 가지는 기술적 한계로 인하여 영상에 잡음과 왜곡이 포함되어 있기 때문에 이를 효과적으로 제거할 수 있는 기술이 요구되며, 처리 된 깊이 카메라 영상은 다양한 방법으로 색상 영상과 융합되어 장면의 깊이 정보를 생성할 수 있다. 본 논문에서는 이와 같이 다시 점 카메라와 깊이 카메라를 함께 사용하여 고화질의 깊이 정보를 획득할 수 있는 혼합형 카메라 방식의 원리와 깊이 영상 처리 및 깊이 생성을 위한 기술 동향을 설명한다.
본 논문은 지형중심 게임에서 깊이레벨에 기반한 텍스처 분석 테이블(TAT)을 이용하여 높이에 따라 정의된 지형 객체들을 효율적으로 생성 시킬 수 있는 알고리즘을 제안한다. 기존의 방법에서는 맵에디터 상에서 지형의 텍스처와 지형의 사실적 표현을 위해 나무나 바위 등의 지형 객체를 수작업으로 편집하였는데 제안한 알고리즘을 적용하면 깊이 단계별 최소의 지형 텍스처만을 사용하여 매우 다양한 종류의 지형 텍스처를 생성해 낼 수 있으며, TAT로부터 깊이 정보값을 활용하여 자연-객체들(Natural Object)을 자동으로 생성시킬 수 있다. 이로써 게임 지형을 제작하는데 불필요한 작업량을 줄일 수 있으며, 그만큼 인공-객체들(Artificial Obejct)을 생성하는데 많은 시간을 투입할 수 있다.
구조광을 이용하는 깊이 정보 획득 방법에서 코드화된 패턴의 색상 정보는 촬영된 영상으로부터 패턴을 해석하여 패턴의 위상 변화량으로부터 물체의 깊이 정보를 찾기 위함으로 구조광 패턴들이 대상에 정확하게 투영되는 것이 중요하다. 그러나 프로젝터의 특성에 따라 패턴의 RGB 채널들이 종종 좌표에서 어긋나는 현상이 발생하게 된다. 본 논문에서는 프로젝터의 특성에 따른 컬러 구조광의 캘리브레이션을 위한 방법을 제안한다. 제안하는 방법은 시변화 가시구조광 시스템의 캘리브레이션 과정 중에서 투사된 영상으로부터 RGB 패턴 채널을 추출하고, 추출된 패턴으로부터 각 RGB 채널에 대한 히스토그램을 통하여 패턴 채널이 어느 방향으로 번져 나갔는지를 파악하여 원 패턴에 대한 재정렬을 수행한다. 본 논문의 실험결과에 따르면, 기존의 방법에 비해 간단한 방법으로 가시구조광 패턴에 대한 캘리브레션을 수행할 수 있음을 보여준다.
최근 3 차원 깊이 정보를 활용하는 분야가 많아짐에 따라, 정확한 깊이 정보를 추출하기 위한 연구가 계속 진행되고 있다. 특히 ASW(Adaptive Support Weight)는 기존의 영역 기반 알고리즘의 정확도를 향상시키기 위한 방법으로 많이 이용되고 있다. 그 중에서 ACT(Adaptive Census Transform)는 폐백 영역이나 경계 영역에서 정확도가 낮다는 단점이 있었다. 본 논문에서는 정확한 깊이 맵 (depth map)을 추출하기 위해, 기존의 ACT를 개선한 스테레오 정합 알고리즘을 제안한다. 이는 잡음에 강하고 재사용성이 높은 MSW(Multiple Sparse Windows)를 기반으로, TAD(Truncated Absolute Difference)와 ACT 두 개의 정합 알고리즘을 동시에 사용하여 폐색 영역과 울체의 경계 영역에서 정확도가 낮은 기존의 방법을 개선한다. Middlebury에서 제공하는 영상을 사용한 시뮬레이션 결과는 제안한 방법이 기존의 방법보다 평균적으로 약 1.9% 낮은 에러율(error rate)을 가짐을 보여준다.
요즘 스마트폰과 스마트 TV와 같은 스마트 기기에 대한 관심이 높아짐에 따라 보다 다양한 기능을 포함하는 영상장치가 주목받고 있다. 특히, 스마트 TV는 3차원 영상을 서비스함에 따라 보다 고화질의 3차원 영상을 효율적으로 부호화하는 것이 중요하다. 최근 MPEG(moving picture experts group) 그룹에서는 다시점 영상과 깊이 영상을 동시에 압축하여 부호화하는 표준화 작업이 진행되고 있다. 제한된 수의 시점을 이용하여 편안한 3차원 입체 영상을 재현하기 위해서는, 충분한 수의 중간시점의 영상을 생성해야 한다. 깊이정보를 이용하여 3차원 워핑을 수행하면 가상시점의 영상을 합성할 수 있는데, 깊이값의 정확도에 따라 화질이 달라진다. 스테레오 정합 기술을 이용하여 깊이맵을 획득할 때 객체의 경계와 같은 깊이값 불연속 영역에서 깊이값 오류가 발생할 수 있다. 이러한 오류는 생성한 중간영상의 배경에 원치 않는 잡음을 생성한다. 본 논문에서는 편안한 3차원 비디오 재현을 위하여 깊이맵을 기반으로 중간시점의 영상을 생성할 때 발생하는 경계 잡음을 제거하는 방법을 제안한다. 중간시점의 영상을 합성할 때 비폐색 영역을 합성한 후 경계 잡음이 발생할 수 있는 영역을 구별한 다음, 잡음이 없는 참조영상으로 대체함으로써 경계 잡음을 제거할 수 있다. 실험 결과를 통해 배경 잡음이 사라진 자연스러운 합성영상을 생성했다.
본 논문은 2D/3D 동영상 변환을 위한 그룹화된 객체별 깊이 정보의 차등 적용 기법에 관한 연구이다. 기존의 깊이 정보 획득 기법 중 움직임 정보를 깊이 정보로써 사용할 때 움직임이 존재하지 않는 객체의 경우 깊이 정보를 획득할 수 없어 해당 객체의 3D 효과를 얻을 수 없는 문제점이 있다. 본 논문에서는 이러한 문제점을 해결하고자 객체와 배경을 추출하고 객체에 움직임 정보를 이용한 깊이 정보를 할당하는 과정을 거친 후, 배경과 깊이 정보가 할당되지 못한 객체에 깊이 단서 중 하나인 상대적 높이 단서를 이용한 깊이 정보를 할당함으로써 모든 객체에서 3D 효과를 얻을 수 있는 기법을 제안한다. 제안한 기법으로 깊이맵을 생성하여 DIBR(Depth Image Based Rendering)으로 3D 영상을 생성하여 확인한 결과 움직임이 없는 객체에서도 3D 효과를 얻을 수 있음을 확인하였다.
영상물을 완성하기 위해서는 실사 배우의 동작을 캡처하여 가상 환경과 합성하는 과정을 거치게 된다. 이때 제작비용의 과다소요 또는 후처리 기술의 부재로 인하여 수작업으로 제작하는 것이 일반적이다. 배우는 크로마키 가상스튜디오에서 상상력에 의존하여 연기를 하게 되는데, 실존하지 않는 물체와의 충돌 및 반응을 고려하여 움직여야 한다. CG를 통한 합성 과정에서 배우의 움직임과 가상 환경이 어긋나는 경우는 원본 영상을 폐기하고, 재촬영해야 하는 문제가 발생한다. 본 논문에서는 재촬영의 비율을 줄이고, 제작기간 단축 및 제작 비용절감을 위한 깊이 기반의 실시간 3D 가상 영상합성 시스템을 제안하고 구현한다. 가상 배경과 3D 모델, 실사 배우를 실시간으로 합성하여 상호간의 충돌이나 반응을 촬영 현장에서 판단할 수 있으므로 배우의 잘못된 위치나 연기를 개선할 수 있게 한다.
본 논문에서는 자율주행 인지 기술의 핵심 요소인 객체 인식과 거리 측정을 위해 서로 다른 초점거리를 가진 다시점 카메라와 라이다(LiDAR) 센서를 결합한 복합형 카메라 시스템을 제안한다. 제안한 복합형 카메라 시스템을 이용해 장면 안의 객체를 추출하고, 추출한 객체의 정확한 위치와 거리 정보를 생성한다. 빠른 계산 속도와 높은 정확도, 실시간 처리가 가능하다는 장점 때문에 자율주행 분야에서 많이 사용하고 있는 YOLO7 알고리즘을 이용해 장면 안의 객체를 추출한다. 그리고 객체의 위치와 거리 정보를 생성하기 위해 다시점 카메라를 이용해 깊이맵을 생성한다. 마지막으로 거리 정확도를 향상시키기 위해 라이다 센서에서 획득한 3차원 거리 정보와 생성한 깊이맵을 하나로 결합한다. 본 논문에서는 제안한 복합형 카메라 시스템을 기반으로 주행중인 주변 환경을 더욱 정확하게 인식함과 동시에 3차원 공간상의 정확한 위치와 거리 정보까지 생성할 수 있는 자율주행 차량 플랫폼을 제안하였으며, 이를 통해 자율주행 차량의 안전성과 효율성을 향상시킬 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.