• Title/Summary/Keyword: 깊이인식

Search Result 430, Processing Time 0.033 seconds

Fusing texture and depth edge information for face recognition (조명에 강인한 얼굴인식을 위한 텍스쳐 정보와 깊이 에지 기반의 퓨전 벡터 생성기법)

  • Ahn Byung-Woo;Sung Won-Je;Yi June-Ho
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2006.06a
    • /
    • pp.246-250
    • /
    • 2006
  • 얼굴의 중요한 특징부분을 잘 나타내는 깊이 에지 정보를 사용하면 표정과 조명변화로 인한 얼굴 픽셀의 밝기 값 변화에 대해 강인한 특징벡터를 생성할 수 있다. 본 논문에서는 깊이 에지(depth edge)를 이용한 새로운 특징벡터를 제안하고 그 유용성에 대하여 실험하였다. 새롭게 제안한 특징벡터는 얼굴의 깊이 에지 영상을 수평과 수직 방향으로 투영하여 얻어지는 에지 강도 히스토그램을 이용하기 때문에 얼굴의 움직임으로 인한 변형에 영향을 받지 않는다. 또한, 실시간 검출과 인식이 매우 용이하다. 제안한 깊이 에지 기반 특징벡터와 백색광 영상의 픽셀 값 기반 특징벡터에 대해 부공간 투영기반의 얼굴인식 알고리즘을 적용하여 성능을 비교 평가하였다. 실험 결과, 얼굴의 깊이 에지에 기반한 얼굴인식이 기존의 백색광만을 이용한 방법에 비해 높은 인식성능을 보였다

  • PDF

Face Recognition Method Based on Local Binary Pattern using Depth Images (깊이 영상을 이용한 지역 이진 패턴 기반의 얼굴인식 방법)

  • Kwon, Soon Kak;Kim, Heung Jun;Lee, Dong Seok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.6
    • /
    • pp.39-45
    • /
    • 2017
  • Conventional Color-Based Face Recognition Methods are Sensitive to Illumination Changes, and there are the Possibilities of Forgery and Falsification so that it is Difficult to Apply to Various Industrial Fields. In This Paper, we propose a Face Recognition Method Based on LBP(Local Binary Pattern) using the Depth Images to Solve This Problem. Face Detection Method Using Depth Information and Feature Extraction and Matching Methods for Face Recognition are implemented, the Simulation Results show the Recognition Performance of the Proposed Method.

사용자-객체 상호작용을 위한 복잡 배경에서의 객체 인식

  • Bae, Ju-Han;Hwang, Yeong-Bae;Choe, Byeong-Ho;Kim, Hyo-Ju
    • Information and Communications Magazine
    • /
    • v.31 no.3
    • /
    • pp.46-53
    • /
    • 2014
  • 사용자-객체 상호작용을 위해서는 영상 내 객체의 종류와 위치를 정확하게 파악하여 사용자가 객체에 관련된 행동을 취할 경우, 그에 맞는 상호작용을 수행해야 한다. 이러한 객체인식에 널리 사용되는 지역 불변 특징량 기반의 방법론은 복잡한 배경이나 균일 물체에 대하여 잘못된 매칭으로 인식률이 저하된다. 본고에서는 이를 해결하기 위해, 컬러와 깊이 근접도 기반 깊이 계층을 나누고, 복잡 배경으로부터 생기는 잘못된 특징점 대응을 최소화 하기 위해 각 깊이 계층과 인식 물체 영상간의 특징점 대응을 수행한다. 또한, 각 깊이 계층영역에서 색상 히스토그램 재투영으로 객체의 위치를 추정하고 추정 영역과 인식 물체 영상간의 생상 및 깊이 유사도를 판단한다. 최종적으로, 복잡 배경 효과를 최소화한 특징점 대응의 수, 색상 및 컬러 유사도를 고려하여 신뢰도를 측정하여 객체를 인식하게 되며, 이를 통해 복잡한 배경에서도 사용자와 객체간의 유연한 상호작용이 가능해진다.

3D Face Recognition using Local Depth Information

  • 이영학;심재창;이태홍
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.818-825
    • /
    • 2002
  • Depth information is one of the most important factor for the recognition of a digital face image. Range images are very useful, when comparing one face with other faces, because of implicating depth information. As the processing for the whole fare produces a lot of calculations and data, face images ran be represented in terms of a vector of feature descriptors for a local area. In this paper, depth areas of a 3 dimensional(3D) face image were extracted by the contour line from some depth value. These were resampled and stored in consecutive location in feature vector using multiple feature method. A comparison between two faces was made based on their distance in the feature space, using Euclidian distance. This paper reduced the number of index data in the database and used fewer feature vectors than other methods. Proposed algorithm can be highly recognized for using local depth information and less feature vectors or the face.

Design of 2D face recognition security planning to vulnerability (2차원 안면인식의 취약성 보안 방안 설계)

  • Lee, Jaeung;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.243-245
    • /
    • 2017
  • In the face recognition technology, which has been studied a lot, the security of the face recognition technology is improved by receiving the depth data as a weak point for the 2D. In this paper, we expect the effect of cost reduction by enhancing the security of 2D by taking new features of eye flicker that each person possesses as new data information.

  • PDF

Facial Feature Localization from 3D Face Image using Adjacent Depth Differences (인접 부위의 깊이 차를 이용한 3차원 얼굴 영상의 특징 추출)

  • 김익동;심재창
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.617-624
    • /
    • 2004
  • This paper describes a new facial feature localization method that uses Adjacent Depth Differences(ADD) in 3D facial surface. In general, human recognize the extent of deepness or shallowness of region relatively, in depth, by comparing the neighboring depth information among regions of an object. The larger the depth difference between regions shows, the easier one can recognize each region. Using this principal, facial feature extraction will be easier, more reliable and speedy. 3D range images are used as input images. And ADD are obtained by differencing two range values, which are separated at a distance coordinate, both in horizontal and vertical directions. ADD and input image are analyzed to extract facial features, then localized a nose region, which is the most prominent feature in 3D facial surface, effectively and accurately.

Hardware Implementation of Depth Image Stabilization Method for Efficient Computer Vision System (효율적인 컴퓨터 비전 시스템을 위한 깊이 영상 안정화 방법의 하드웨어 구현)

  • Kim, Geun-Jun;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1805-1810
    • /
    • 2015
  • Increasing of depth data accessibility, depth data is used in many researches. Motion recognition of computer vision also widely use depth image. More accuracy motion recognition system needs more stable depth data. But depth sensor has a noise. This noise affect accuracy of the motion recognition system, we should noise suppression. In this paper, we propose using spatial domain and temporal domain stabilization for depth image and makes it hardware IP. We adapted our hardware to floor removing algorithm and verification its effect. we did realtime verification using FPGA and APU. Designed hardware has maximum frequency 202.184MHz.

Depth Image Poselets via Body Part-based Pose and Gesture Recognition (신체 부분 포즈를 이용한 깊이 영상 포즈렛과 제스처 인식)

  • Park, Jae Wan;Lee, Chil Woo
    • Smart Media Journal
    • /
    • v.5 no.2
    • /
    • pp.15-23
    • /
    • 2016
  • In this paper we propose the depth-poselets using body-part-poses and also propose the method to recognize the gesture. Since the gestures are composed of sequential poses, in order to recognize a gesture, it should emphasize to obtain the time series pose. Because of distortion and high degree of freedom, it is difficult to recognize pose correctly. So, in this paper we used partial pose for obtaining a feature of the pose correctly without full-body-pose. In this paper, we define the 16 gestures, a depth image using a learning image was generated based on the defined gestures. The depth poselets that were proposed in this paper consists of principal three-dimensional coordinates of the depth image and its depth image of the body part. In the training process after receiving the input defined gesture by using a depth camera in order to train the gesture, the depth poselets were generated by obtaining 3D joint coordinates. And part-gesture HMM were constructed using the depth poselets. In the testing process after receiving the input test image by using a depth camera in order to test, it extracts foreground and extracts the body part of the input image by comparing depth poselets. And we check part gestures for recognizing gesture by using result of applying HMM. We can recognize the gestures efficiently by using HMM, and the recognition rates could be confirmed about 89%.

Depth image Based Formation Control for Swarm Robots Using Marker Recognition (마커 인식을 이용한 깊이 영상 기반 군집로봇 대형제어)

  • Choi, Seung Yub;Tak, Myung Hwan;Joo, Young Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1325-1326
    • /
    • 2015
  • 본 논문에서는 마커 인식을 이용한 깊이 영상 기반 군집로봇 대형제어 방법을 제안한다. 제안한 방법은 먼저, follower 로봇들의 입력 영상에서 마커 인식 알고리즘을 이용하여 마커를 인식 한 뒤 인식된 마커를 분석하여 등록된 ID를 찾는다. 검출된 마커의 ID가 leader로봇의 ID일 경우 해당 마커의 위치와 기울기 값을 깊이 영상 센서로부터들어오는 깊이 정보를 통해 계산 한 뒤 마커의 위치와 기울기를 이용하여 대형제어를 한다. 마지막으로 제안한 알고리즘을 실제 로봇을 이용한 대형 제어실험을 통해 응용 가능성을 증명한다.

  • PDF

Static Sign Language Recognition System Using Depth Camera (깊이 영상 기반 정적 수화 인식 시스템)

  • Kim, Ki-sang;Choi, Hyung-Il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.323-326
    • /
    • 2014
  • 본 논문에서는 깊이 카메라를 이용한 사용자의 손 모양, 특히 수화를 인식하는 방법에 대해 제안한다. 손 모양 인식은 손가락 검출과 손 인식으로 크게 2가지로 나눌 수 있다. 손가락 검출을 위해 본 시스템에서는 Distance Transform을 이용하여 손의 뼈대를 검출 하고, Convex Hull을 통해 손가락을 검출하는 방법을 제안한다. 뼈대 검출은 보다 정확한 손가락을 검출할 수 있는 장점이 생긴다. 손 인식에는 손 중심과 손가락의 길이, 손의 축, 손가락의 축, 팔 중심의 위치 등을 이용하여 Decision Tree를 생성하고, 반복적 검사를 통해 인식의 오류율을 줄였다. 실험결과에서는 수화 인식이 성공적으로 잘 인식 되었다는 것을 보인다.

  • PDF