• Title/Summary/Keyword: 깊이값

Search Result 1,146, Processing Time 0.037 seconds

Physical Properties and Apparent Thermal Diffusivity of the Soils where Soil Temperature is Measured Regularly (기상청(氣象廳) 지온(地溫) 측정(測定) 토양(土壤)의 물리적(物理的) 성질(性質)과 겉보기 열확산(熱擴散) 계수(係數) 산정(算定))

  • Song, Kwan-Cheol;Jung, Yeong-Sang;Kim, Byung-Chan;Ahn, Yoon-Soo;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.220-230
    • /
    • 1992
  • Soil temperature is one of the important environmental factors which control all the physical, chemical and biological processes in soil including germination and root growth of plants and other organisms living in the soil ecosystem. Soil water and nutrient availability and mobility are temperature dependent. Soil temperature change is depended primarily upon energy exchange in soil surface, meteorological variance and physical properties of the soils which are closely related to heat transfer mechanism. In this study physical properties including bulk density, soil texture and organic matter content were measured and thermal diffusivity on the soils was calculated. Soil samples from the 66 meteorological stations under the Korea Meteorology were collected and the physical parameters were measured. To obtain relationship between thermal diffusivity and soil water content a heat probe thermal diffusivity measurement apparatus was designed and used in this experiment. According to the survey on soil physicsal properties on the 66 meteorological stations, the 52% of the surface soil texture were sandy loam and laomy sand or sand, 38% were loam and silty loam, and 10% were clay loam and silty clay loam. The bulk density which was closely related with thermal properties showed average of $1.41g/cm^3$ for sandy soils, $1.33g/cm^3$ for loam and silty loam soils, and $1.21g/cm^3$ for clay loam and silty clay loam soils. The apparent thermal diffusivity of the upper layer from 0 to 30cm ranged from 1.16 to $8.40{\times}10^{-3}cm^3/sec$ with average of $3.53{\times}10^{-3}cm^3/sec$. The apparent thermal diffusivities of the Jeju soils of which organic matter contents were high and the bulk densities were low were near $2{\times}10^{-3}cm^3/sec$. The thermal diffusivity of snow measured in Chuncheon ranged from 0.822 to $2.237{\times}10^{-3}cm^3/sec$. The damping depth calculated from the thermal diffusivity ranged from 5.92 to 13.65cm for daily basis and 124 to 342cm for yearly basis. The significant regression equation to estimate thermal diffusivity with bulk density and soil water content was obtained by the heat probe in laboratory.

  • PDF

A study on the compatibility of implant drivers (임플란트 드라이버의 호환성에 대한 연구)

  • Kim, Min-Soo;Lee, Jong-Hyuk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.1
    • /
    • pp.34-41
    • /
    • 2014
  • Purpose: In this study, the diameter of each implant driver was measured and compared to find out the compatibility of implant drivers. Materials and methods: Drivers from 12 implant systems being used in Dankook University Dental Hospital were included in this study. The shapes of the implant drivers were segregated, and the effective length and the diameter of upper, middle, lower part of driver tips were measured (n=10). The measured data were mathematically analyzed for its compatibility. Results: A driver with the smallest diameter (1.17 mm) had the highest compatibility at the upper part of driver tip. This driver could be used for a bigger driver up to 1.35 mm in diameter. There were several driver groups which had the same diameter so as to be interchangeable each other. In the middle part, the smallest diameter measured was 1.2 mm and this was able to replace a driver up to 1.40 mm diameter. Since the diameter generally became thicker from upper part (the tip of driver) to the lower part (the shank of driver), some drivers with bigger diameter at the upper part so which was failed to show any compatibility became compatible with a driver which had smaller diameter at the upper part but wider in the middle part. The compatibility of torx shape drivers were affected by the inner diameter of the drivers not only by the outer diameter. Furthermore, the inner diameter of torx drivers decided the compatibility between torx and hex drivers. Conclusion: From the study it was found that compatibility in drivers existed among certain implant systems and to check its compatibility the diameter at a certain effective length should be measured. However, there has been not enough studies about long-term use of compatible drivers, so effects of using compatible drivers on drivers and implants are unknown. Therefore, usage in inevitable cases only is recommended and further study is needed.

The Analysis of a Cerrobend Compensator and a Electronic Compensator Designed by a Radiation Treatment Planning System (방사선치료계획장치로 설계된 Cerrobend 선량보상체와 전자 선량보상체의 제작 및 특성 분석)

  • Nah Byung-Sik;Chung Woong-Ki;Ahn Sung-Ja;Nam Taek-keun;Yoon Mi-Sun;Song Ju-Young
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.82-88
    • /
    • 2005
  • In this study, the physical compensator made with the high density material, Cerrobend, and the electronic compensator realized by the movement of a dynamic multileaf collimator were analyzed in order to verify the properness of a design function in the commercial RTP (radiation treatment planning) system, Eclipse. The CT images of a phantom composed of the regions of five different thickness were acquired and the proper compensator which can make homogeneous dose distribution at the reference depth was designed in the RTP. The frame for the casting of Cerrobend compensator was made with a computerized automatic styrofoam cutting device and the Millennium MLC-120 was used for the electronic compensator. All the dose values and isodose distributions were measured with a radiographic EDR2 film. The deviation of a dose distribution was $\pm0.99 cGy\;and\;\pm1.82cGy$ in each case of a Cerrobend compensator and a electronic compensator compared with a $\pm13.93 cGy$ deviation in an open beam condition. Which showed the proper function of the designed compensators in the view point of a homogeneous dose distribution. When the absolute dose value was analyzed, the Cerrobend compensator showed a $+3.83\%$ error and the electronic compensator showed a $-4.37\%$ error in comparison with a dose value which was calculated in the RTP. These errors can be admtted as an reasonable results that approve the accuracy of the compensator design in the RTP considering the error in the process of the manufacturing of the Cerrobend compensator and the limitation of a film in the absolute dosimetry.

  • PDF

Comparison of Dosimetry Protocols in High Energy Electron Beams (고에너지 전자선에 대한 표준측정법간의 비교)

  • 박성용;서태석;김회남;신동오;지영훈;군수일;이길동;추성실;최보영
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.267-276
    • /
    • 1998
  • Any detector inserted into a phantom should have such a geometry that it caused as small as possible perturbation of the electron fluence. Plane parallel chambers meet this requirement better than other chambers of configurations. IAEA protocol recommends the use of plane parallel chambers for this reason. However, the cylindrical chambers are widely used for convenient. The purpose of this study is to evaluate the absorbed dose due to the differences of four different dosimetry protocols such as IAEA protocol using cylindrical chamber, TG 21 protocol using cylindrical chamber, Markus protocol using plane parallel chamber, and TG 39 report for the calibration of plane parallel chamber in electron beams. Depth-ionization measurements for the electron beams of nominal energy 6, 9, 12, 15, and 18 MeV from Siemens accelerator with a 10$\times$10 cm$^2$ field size were made using a radiation field analyser with 0.125 cc ion chamber. Dosimetric measurements by IAEA and TG 21 protocol were made with a farmer type ionization chamber in solid water for each electron energy, respectively. Dosimetric measurements by Markus protocol were made with a plane parallel ionization chamber in solid water for each electron energy, respectively. The cavity-gas calibration factor for the plane parallel chamber was obtained with the use of 18 MeV electron beam as guided by TG 39 report. Dosimetric measurements by TG 39 were performed with a plane parallel ionization chamber in solid water for each electron energy, respectively. For all the energies and protocols, measurements were made along the central axis of the distance of 100 cm (SSD = 100 cm) with 10$\times$10 cm$^2$ field size at the depth of d$_{max}$ for each electron beam, respectively. In the case of 18 MeV, the discrepancy of 0.9 % between IAEA and TG 21 was found and the two protocols were agreed within 0.7 % for other energies. In the case of 18 MeV and 6 MeV, the discrepancies of $\pm$ 0.8 % between Markus and TG 39 was found, respectively and the two protocols were agreed within 0.5 % for other energies. Since the discrepancy of 1.6 % between cylindrical and plane parallel chamber was found for 18 MeV, it is suggested to get the calibration factor using other method as guided. by TG 39.9.

  • PDF

User's Impacts on Environmental Deteriorations of Trail in Tôkyusan National Park (덕유산(德裕山) 국립공원(國立公園) 등산로(登山路)의 환경훼손(環境毁損)에 대(對)한 이용영향(利用影響))

  • Seo, Byung Soo;Kim, Sei Cheon;Park, Chong Min;Lee, Chang Heon;Lee, Kyu Wan
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.286-298
    • /
    • 1994
  • The object of this study was to examine the user's impacts on the environmental deteriorations of trail at Ticket Office - Paekryunsa (Temple) Hyangch$\hat{o}$kpong - Dongyupryung - Chilyun Fall area in T$\hat{o}$kyusan National Park. Four trails were sampled in the study area according to the amount of users. Then the user's impacts on trail were measured at each trail. The Ticket Office-Paekryunsa trail was the most used district and followed at Paekryunsa-Hyangch$\hat{o}$kpong trail, Hyangch$\hat{o}$kpong-Dongyupryung trail in descending order. Dongyupryung-Chilyun Fall trail is not used by people because of rest rotation system. The entire width of trail was greater at the more heavily used trail. Maximum depth, cross-sectional area loss, and surface texture and roughness of trail were the highest at Paekryunsa-Hyangch$\hat{o}$kpong trail. Soil hardness, soil acidity, soil moisture content, organic matter content, and exchange canon were influenced by trampling. Soil hardness, soil acidity and exchange canon increased in tramples soil, but content of soil moisture and organic matter decreased therein. Environmental deteriorations of trail were significantly influenced by the amount of users and the slope of trail. Bared lands about $2.000m^2$ were appeared by trampling and camping around Hyangch$\hat{o}$kpong. Effects of carrying of rest rotation system for National Park were partly recognized at Dongyupryung-Chilyun Fall trail.

  • PDF

A Study on the dose distribution produced by $^{32}$ P source form in treatment for inhibiting restenosis of coronary artery (관상동맥 재협착 방지를 위한 치료에서 $^{32}$ P 핵종의 선원 형태에 따른 선량분포에 관한 연구)

  • 김경화;김영미;박경배
    • Progress in Medical Physics
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • In this study, the dose distributions of a $^{32}$ p uniform cylindrical volume source and a surface source, a pure $\beta$emitter, were calculated in order to obtain information relevant to the utilization of a balloon catheter and a radioactive stent. The dose distributions of $^{32}$ p were calculated by means of the EGS4 code system. The sources are considered to be distributed uniformly in the volume and on the surface in the form of a cylinder with a radius of 1.5 mm and length of 20 mm. The energy of $\beta$particles emitted is chosen at random in the $\beta$ energy spectrum evaluated by the solution of the Dirac equation for the Coulomb potential. Liquid water is used to simulate the particle transport in the human body. The dose rates in a target at a 0.5mm radial distance from the surface of cylindrical volume and surface source are 12.133 cGy/s per GBq (0.449 cGy/s per mCi, uncertainty: 1.51%) and 24.732 cGy/s per GBq (0.915 cGy/s per mCi, uncertainty: 1.01%), respectively. The dose rates in the two sources decrease with distance in both radial and axial direction. On the basis of the above results, the determined initial activities were 29.69 mCi and 1.2278 $\mu$Ci for the balloon catheter and the radioactive stent using $^{32}$ P isotope, respectively. The total absorbed dose for optimal therapeutic regimen is considered to be 20 Gy and the treatment time in the case of the balloon catheter is less than 3 min. Absorbed doses in targets placed in a radial direction for the two sources were also calculated when it expressed initial activity in a 1 mCi/ml volume activity density for the cylindrical volume source and a 0.1 mCi/cm$^2$ area activity density for the surface source. The absorbed dose distribution around the $^{32}$ P cylindrical source with different size can be easily calculated using our results when the volume activity density and area activity density for the source are known.

  • PDF

Monte Carlo Simulation of the Carbon Beam Nozzle for the Biomedical Research Facility in RAON (한국형 중이온 가속기 RAON의 의생물 연구시설 탄소 빔 노즐에 대한 Monte Carlo 시뮬레이션)

  • Bae, Jae-Beom;Cho, Byung-Cheol;Kwak, Jung-Won;Park, Woo-Yoon;Lim, Young-Kyung;Chung, Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • The purpose of the Monte Carlo simulation study was to provide the optimized nozzle design to satisfy the beam conditions for biomedical researches in the Korean heavy-ion accelerator, RAON. The nozzle design was required to produce $C^{12}$ beam satisfying the three conditions; the maximum field size, the dose uniformity and the beam contamination. We employed the GEANT4 toolkit in Monte Carlo simulation to optimize the nozzle design. The beams for biomedical researches were required that the maximum field size should be more than $15{\times}15cm^2$, the dose uniformity was to be less than 3% and the level of beam contamination due to the scattered radiation from collimation systems was less than 5% of total dose. For the field size, we optimized the tilting angle of the circularly rotating beam controlled by a pair of dipole magnets at the most upstream of the user beam line unit and the thickness of the scatter plate located downstream of the dipole magnets. The values of beam scanning angle and the thickness of the scatter plate could be successfully optimized to be $0.5^{\circ}$ and 0.05 cm via this Monte Carlo simulation analysis. For the dose uniformity and the beam contamination, we introduced the new beam configuration technique by the combination of scanning and static beams. With the combination of a central static beam and a circularly rotating beam with the tilting angle of $0.5^{\circ}$ to beam axis, the dose uniformity could be established to be 1.1% in $15{\times}15cm^2$ sized maximum field. For the beam contamination, it was determined by the ratio of the absorbed doses delivered by $C^{12}$ ion and other particles. The level of the beam contamination could be achieved to be less than 2.5% of total dose in the region from 5 cm to 17 cm water equivalent depth in the combined beam configuration. Based on the results, we could establish the optimized nozzle design satisfying the beam conditions which were required for biomedical researches.

Channel Changes and Effect of Flow Pulses on Hydraulic Geometry Downstream of the Hapcheon Dam (합천댐 하류 하천지형 변화 예측 및 흐름파가 수리기하 변화에 미치는 영향)

  • Shin, Young-Ho;Julien, Pierre Y.
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.579-589
    • /
    • 2009
  • Hwang River in South Korea, has experienced channel adjustments due to dam construction. Hapcheon main dam and re-regulation dam. The reach below the re-regulation dam (45 km long) changed in flow regime, channel width, bed material distribution, vegetation expansion, and island formation after dam construction. The re-regulation dam dramatically reduced annual peak flow from 654.7 $m^3$/s to 126.3 $m^3$/s and trapped the annual 591 thousand $m^3$ of sediment load formerly delivered from the upper watershed since the completion of the dam in 1989. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that non-vegetated active channel width narrowed an average of 152 m (47% of 1982) and non-vegetated active channel area decreased an average of 6.6 km2 (44% of 1982) between 1982 and 2004, with most narrowing and decreasing occurring after dam construction. The effects of daily pulses of water from peak hydropower generation and sudden sluice gate operations are investigated downstream of Hapcheon Dam in South Korea. The study reach is 45 km long from the Hapcheon re-regulation Dam to the confluence with the Nakdong River. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that the non-vegetated active channel width narrowed an average of 152 m (47% reduction since 1982). The non-vegetated active channel area also decreased an average of 6.6 $km^2$ (44% reduction since 1982) between 1982 and 2004, with most changes occurring after dam construction. The average median bed material size increased from 1.07 mm in 1983 to 5.72 mm in 2003, and the bed slope of the reach decreased from 0.000943 in 1983 to 0.000847 in 2003. The riverbed vertical degradation is approximately 2.6 m for a distance of 20 km below the re-regulation dam. It is expected from the result of the unsteady sediment transport numerical model (GSTAR-1D) steady simulations that the thalweg elevation will reach a stable condition around 2020. The model also confirms the theoretical prediction that sediment transport rates from daily pulses and flood peaks are 21 % and 15 % higher than their respective averages.

The evaluation of usefulness of Electronic Portal Imaging Device(EPID) (Electronic Portal Imaging Device(EPID)의 유용성 평가)

  • Lee, Yang-Hoon;Kim, Bo-Kyoum;Jung, Chi-Hoon;Lee, Je-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.1
    • /
    • pp.19-31
    • /
    • 2005
  • Purpose : To supply the information of EPID system and to analyze the possibility of substitution EPID for film dosimetry. Materials & Methods : With amorphous silicon(aSi) type EPID and liquid filled lonization chamber(LC) type EPID, the reproducibility according to focus detector distance(FDD) change and gantry rotation was analyzed, and also the possible range of image acquisition was analyzed with Alderson Rando phantom. The resolution and the contrast of aSi type EPID image were analyzed through Las Vegas phantom and water phantom. DMLC image was analyzed with X-Omat V film and EPID to see wether it could be applied to the qualify assurance(QA) of IMRT. Results : The reproducibility of FDD position was within 1mm, but the reproducibility of gantry rotation was ${\pm}2,\;{\pm}3mm$ respectively. The resolution and the contrast of EPID image were affected by dose rate, image acquisition time, image acquisition method and frame number. According to the possible range of image acquisition of EPID, it is verified that the EPID is easier to use than film. There is no difference between X-Omat V film and EPID images for the QA of IMRT. Conclusion : Through various evaluation, we could obtain lots of useful information about the EPID. Because the EPID has digital data, also we found that the EPID is more useful than film dosimerty for the periodical Qualify Assurance of IMRT. Especially when it is difficult to do point dose measurement with diode or ionization chamber, the EPID could be very useful substitute. And we found that the diode and ionization chamber are difficult to evaluate the sliding window images of IMRT, but the EPID was more useful to do it.

  • PDF

Study on the Various Size Dependence of Ionization Chamber in IMRT Measurement to Improve Dose-accuracy (세기조절 방사선치료(IMRT)의 환자 정도관리에서 다양한 이온전리함 볼륨이 정확도에 미치는 영향)

  • Kim, Sun-Young;Lee, Doo-Hyun;Cho, Jung-Keun;Jung, Do-Hyeung;Kim, Ho-Sick;Choi, Gye-Sook
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • Purpose: IMRT quality assurance(Q.A) is consist of the absolute dosimetry using ionization chamber and relative dosimetry using the film. We have in general used 0.015 cc ionization chamber, because small size and measure the point dose. But this ionization chamber is too small to give an accurate measurement value. In this study, we have examined the degree of calculated to measured dose difference in intensity modulated radiotherapy(IMRT) based on the observed/expected ratio using various kinds of ion chambers, which were used for absolute dosimetry. Materials and Methods: we peformed the 6 cases of IMRT sliding-window method for head and neck cases. Radiation was delivered by using a Clinac 21EX unit(Varian, USA) generating a 6 MV x-ray beam, which is equipped with an integrated multileaf collimator. The dose rate for IMRT treatment is set to 300 MU/min. The ion chamber was located 5cm below the surface of phantom giving 100cm as a source-axis distance(SAD). The various types of ion chambers were used including 0.015cc(pin point type 31014, PTW. Germany), 0.125 cc(micro type 31002, PTW, Germany) and 0.6 cc(famer type 30002, PTW, Germany). The measurement point was carefully chosen to be located at low-gradient area. Results: The experimental results show that the average differences between plan value and measured value are ${\pm}0.91%$ for 0.015 cc pin point chamber, ${\pm}0.52%$ for 0.125 cc micro type chamber and ${\pm}0.76%$ for farmer type 0.6cc chamber. The 0.125 cc micro type chamber is appropriate size for dose measure in IMRT. Conclusion: IMRT Q.A is the important procedure. Based on the various types of ion chamber measurements, we have demonstrated that the dose discrepancy between calculated dose distribution and measured dose distribution for IMRT plans is dependent on the size of ion chambers. The reason is small size ionization chamber have the high signal-to-noise ratio and big size ionization chamber is not located accurate measurement point. Therefore our results suggest the 0.125 cc farmer type chamber is appropriate size for dose measure in IMRT.

  • PDF