• Title/Summary/Keyword: 깁스모형

Search Result 58, Processing Time 0.019 seconds

Bayesian Interval Estimation of Tobit Regression Model (토빗회귀모형에서 베이지안 구간추정)

  • Lee, Seung-Chun;Choi, Byung Su
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.737-746
    • /
    • 2013
  • The Bayesian method can be applied successfully to the estimation of the censored regression model introduced by Tobin (1958). The Bayes estimates show improvements over the maximum likelihood estimate; however, the performance of the Bayesian interval estimation is questionable. In Bayesian paradigm, the prior distribution usually reflects personal beliefs about the parameters. Such subjective priors will typically yield interval estimators with poor frequentist properties; however, an objective noninformative often yields a Bayesian procedure with good frequentist properties. We examine the performance of frequentist properties of noninformative priors for the Tobit regression model.

Bayesian logit models with auxiliary mixture sampling for analyzing diabetes diagnosis data (보조 혼합 샘플링을 이용한 베이지안 로지스틱 회귀모형 : 당뇨병 자료에 적용 및 분류에서의 성능 비교)

  • Rhee, Eun Hee;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.131-146
    • /
    • 2022
  • Logit models are commonly used to predicting and classifying categorical response variables. Most Bayesian approaches to logit models are implemented based on the Metropolis-Hastings algorithm. However, the algorithm has disadvantages of slow convergence and difficulty in ensuring adequacy for the proposal distribution. Therefore, we use auxiliary mixture sampler proposed by Frühwirth-Schnatter and Frühwirth (2007) to estimate logit models. This method introduces two sequences of auxiliary latent variables to make logit models satisfy normality and linearity. As a result, the method leads that logit model can be easily implemented by Gibbs sampling. We applied the proposed method to diabetes data from the Community Health Survey (2020) of the Korea Disease Control and Prevention Agency and compared performance with Metropolis-Hastings algorithm. In addition, we showed that the logit model using auxiliary mixture sampling has a great classification performance comparable to that of the machine learning models.

Bayesian quantile regression analysis of private education expenses for high scool students in Korea (일반계 고등학생 사교육비 지출에 대한 베이지안 분위회귀모형 분석)

  • Oh, Hyun Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1457-1469
    • /
    • 2017
  • Private education expenses is one of the key issues in Korea and there have been many discussions about it. Academically, most of previous researches for private education expenses have used multiple regression linear model based on ordinary least squares (OLS) method. However, if the data do not satisfy the basic assumptions of the OLS method such as the normality and homoscedasticity, there is a problem with the reliability of estimations of parameters. In this case, quantile regression model is preferred to OLS model since it does not depend on the assumptions of nonnormality and heteroscedasticity for the data. In the present study, the data from a survey on private education expenses, conducted by Statistics Korea in 2015 has been analyzed for investigation of the impacting factors for private education expenses. Since the data do not satisfy the OLS assumptions, quantile regression model has been employed in Bayesian approach by using gibbs sampling method. The analysis results show that the gender of the student, parent's age, and the time and cost of participating after school are not significant. Household income is positively significant in proportion to the same size for all levels (quantiles) of private education expenses. Spending on private education in Seoul is higher than other regions and the regional difference grows as private education expenditure increases. Total time for private education and student's achievement have positive effect on the lower quantiles than the higher quantiles. Education level of father is positively significant for midium-high quantiles only, but education level of mother is for all but low quantiles. Participating after school is positively significant for the lower quantiles but EBS textbook cost is positively significant for the higher quantiles.

A Bayesian Method to Semiparametric Hierarchical Selection Models (준모수적 계층적 선택모형에 대한 베이지안 방법)

  • 정윤식;장정훈
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.161-175
    • /
    • 2001
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. Hierarchical models including selection models are introduced and shown to be useful in such Bayesian meta-analysis. Semiparametric hierarchical models are proposed using the Dirichlet process prior. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierachical selection model with including unknown weight function and use Markov chain Monte Carlo methods to develop inference for the parameters of interest. Using Bayesian method, this model is used on a meta-analysis of twelve studies comparing the effectiveness of two different types of flouride, in preventing cavities. Clinical informative prior is assumed. Summaries and plots of model parameters are analyzed to address questions of interest.

  • PDF

Bayesian Analysis of a Stochastic Beta Model in Korean Stock Markets (확률베타모형의 베이지안 분석)

  • Kho, Bong-Chan;Yae, Seung-Min
    • The Korean Journal of Financial Management
    • /
    • v.22 no.2
    • /
    • pp.43-69
    • /
    • 2005
  • This study provides empirical evidence that the stochastic beta model based on Bayesian analysis outperforms the existing conditional beta model and GARCH model in terms of the estimation accuracy and the explanatory power in the cross-section of stock returns in Korea. Betas estimated by the stochastic beta model explain $30{\sim}50%$ of the cross-sectional variation in stock-returns, whereas other time-varying beta models account for less than 3%. Such a difference in explanatory power across models turns out to come from the fact that the stochastic beta model absorbs the variation due to the market anomalies such as size, BE/ME, and idiosyncratic volatility. These results support the rational asset pricing model in that market anomalies are closely related to the variation of expected returns generated by time-varying betas.

  • PDF

Bayesian Computation for Superposition of MUSA-OKUMOTO and ERLANG(2) processes (MUSA-OKUMOTO와 ERLANG(2)의 중첩과정에 대한 베이지안 계산 연구)

  • 최기헌;김희철
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.2
    • /
    • pp.377-387
    • /
    • 1998
  • A Markov Chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. For each observed failure epoch, we introduced latent variables that indicates with component of the Superposition model. This data augmentation approach facilitates specification of the transitional measure in the Markov Chain. Metropolis algorithms along with Gibbs steps are proposed to preform the Bayesian inference of such models. for model determination, we explored the Pre-quential conditional predictive Ordinate(PCPO) criterion that selects the best model with the largest posterior likelihood among models using all possible subsets of the component intensity functions. To relax the monotonic intensity function assumptions, we consider in this paper Superposition of Musa-Okumoto and Erlang(2) models. A numerical example with simulated dataset is given.

  • PDF

The NHPP Bayesian Software Reliability Model Using Latent Variables (잠재변수를 이용한 NHPP 베이지안 소프트웨어 신뢰성 모형에 관한 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.6 no.3
    • /
    • pp.117-126
    • /
    • 2006
  • Bayesian inference and model selection method for software reliability growth models are studied. Software reliability growth models are used in testing stages of software development to model the error content and time intervals between software failures. In this paper, could avoid multiple integration using Gibbs sampling, which is a kind of Markov Chain Monte Carlo method to compute the posterior distribution. Bayesian inference for general order statistics models in software reliability with diffuse prior information and model selection method are studied. For model determination and selection, explored goodness of fit (the error sum of squares), trend tests. The methodology developed in this paper is exemplified with a software reliability random data set introduced by of Weibull distribution(shape 2 & scale 5) of Minitab (version 14) statistical package.

  • PDF

Bayesian analysis of latent factor regression model (내재된 인자회귀모형의 베이지안 분석법)

  • Kyung, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.4
    • /
    • pp.365-377
    • /
    • 2020
  • We discuss latent factor regression when constructing a common structure inherent among explanatory variables to solve multicollinearity and use them as regressors to construct a linear model of a response variable. Bayesian estimation with LASSO prior of a large penalty parameter to construct a significant factor loading matrix of intrinsic interests among infinite latent structures. The estimated factor loading matrix with estimated other parameters can be inversely transformed into linear parameters of each explanatory variable and used as prediction models for new observations. We apply the proposed method to Product Service Management data of HBAT and observe that the proposed method constructs the same factors of general common factor analysis for the fixed number of factors. The calculated MSE of predicted values of Bayesian latent factor regression model is also smaller than the common factor regression model.

Bayesian Inference for Autoregressive Models with Skewed Exponential Power Errors (비대칭 지수멱 오차를 가지는 자기회귀모형에서의 베이지안 추론)

  • Ryu, Hyunnam;Kim, Dal Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1039-1047
    • /
    • 2014
  • An autoregressive model with normal errors is a natural model that attempts to fit time series data. More flexible models that include normal distribution as a special case are necessary because they can cover normality to non-normality models. The skewed exponential power distribution is a possible candidate for autoregressive models errors that may have tails lighter(platykurtic) or heavier(leptokurtic) than normal and skewness; in addition, the use of skewed exponential power distribution can reduce the influence of outliers and consequently increases the robustness of the analysis. We use SIR algorithm and grid method for an efficient Bayesian estimation.

Bayesian Parameter Estimation of 2D infinite Hidden Markov Model for Image Segmentation (영상분할을 위한 2차원 무한 은닉 마코프 모형의 비모수적 베이스 추정)

  • Kim, Sun-Worl;Cho, Wan-Hyun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.477-479
    • /
    • 2011
  • 본 논문에서는 1차원 은닉 마코프 모델을 2차원으로 확장하기 위하여 노드들의 마코프 특성이 인과적인 관계를 갖는 마코프 메쉬 모델을 이용하여 완전한 2차원 HMM의 구조를 갖는 모델을 제안한다. 마코프메쉬 모델은 이웃시스템을 통하여 이전의 시점을 정의하고, 인과적인 관계를 통하여 전이확률의 계산을 가능하게 한다. 또한 영상의 최적의 분할을 위하여 계층적 디리슐레 과정을 사전분포로 두어 고정된 상태의 수가 아닌 무한의 상태 수를 갖는 2차원 HMM을 제안한다. HDP로 정의된 사전분포와 관측된 표본 자료의 정보를 갖는 우도함수를 결합한 사후분포의 베이스 추정은 깁스샘플링 알고리즘을 이용하여 계산된다.