• Title/Summary/Keyword: 김 열

Search Result 5,830, Processing Time 0.037 seconds

Scalable AlGaN/GaN HEMTGs Model Including Thermal Effect (스케일링이 가능한 AlGaN/GaN HEMT 소자의 열 모델에 관한 연구)

  • 김동기;김성호;오재응;권영우
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.705-711
    • /
    • 2003
  • In this Paper, 2${\times}$100 $\mu\textrm{m}$ AlCaN/GaN HEMT's(on sapphire substrate) large signal model including thermal effect was extracted. An equation based empirical model was employed to make large signal model for convergence and high speed. Pulsed I-V measurement was performed to extract thermal resistance and capacitance. Power amplifiers with 9 mm and 15 mm AlCaN/GaN HEMTS were designed using scaled modeling results of 2${\times}$100 $\mu\textrm{m}$ device respectively. From comparisons between measured and simulated data, the model considering of thermal effects gave better agreement than without one. It demonstrates that thermal modeling must be performed for power amplifier that uses large size transistors.

Prediction of the shelf-life of ammunition by time series analysis (시계열분석을 적용한 저장탄약수명 예측 기법 연구 - 추진장약의 안정제함량 변화를 중심으로 -)

  • Lee, Jung-Woo;Kim, Hee-Bo;Kim, Young-In;Hong, Yoon-Gee
    • Journal of the military operations research society of Korea
    • /
    • v.37 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • To predict the shelf-life of ammunition stockpiled in intermediate have practical meaning as a core value of combat support. This research is to Predict the shelf-life of ammunition by applying time series analysis based on report from ASRP of the 155mm, KD541 performed for 6 years. This study applied time series analysis using 'Mini-tab program' to measure the amount of stabilizer as time passes by is different from the other one that uses regression analysis. The average shelf-life of KD541 drawn by time series analysis was 43 years and the lowest shelf-life assessed on the 95% confidence level was 35 years.

A Study on the Recognition of an English Calling Card by using Contour Tracking Algorithm and Enhanced ART1 (윤곽선 추적 알고리즘과 개선된 ART1을 이용한 영문 명함 인식에 관한 연구)

  • 김광백;김철기;김정원
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.105-115
    • /
    • 2002
  • This paper proposed a recognition method of english calling card using both 4-directed contour tracking algorithm and enhanced ART1 algorithm. After we extract candidate character string region using horizontal smearing and 4-directed contour tracking method, we extract character string region through comparison of character region and non-character region using horizontal and vertical ratio and area in english calling card. In extracted character string region, we extract each character using horizontal smearing and contour tracking algorithm, and recognize each character by enhanced ART1 algorithm. The proposed ART1 algorithm is enhanced by dynamic control of similarity using fuzzy sum connective operator. The result indicate that the proposed method is superior in performance.

  • PDF

Improved Thermoacoustic Model Considering Heat Release Distribution (열분포를 고려한 열음향 모델의 개선)

  • Kim, Daesik;Kim, Kyu Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.443-449
    • /
    • 2014
  • Thermoacoustic (TA) models have been widely used to predict combustion instability characteristics in a gas turbine lean premixed combustor. However, these techniques have shown some limitations in improving the model accuracy related to an over-simplification of the combustion system and flame geometry. Efforts were made in the current study to improve the limitations of the TA models. One strategy was to modify the actual flame location in the model, and another was to consider the heat release distribution through the flames. The modified TA model results show better accuracy in predicting the growth rate of instabilities compared with the previous results.

산화 탄소 나노 튜브 나노유체의 열적 특성에 대한 연구

  • Sim, Da-Min;Yang, Yong-U;Kim, Yeong-Hun;Kim, Hyo-Seok;Kim, Nam-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.383.2-383.2
    • /
    • 2016
  • 임계 열유속 현상은 열전달 시스템에서 가열조건이나 유동조건이 변함에 따라 열전달 표면 부근의 유체상태가 액체에서 기체로 바뀌면서 열전달계수가 급격히 감소하는 현상을 말한다. 임계 열유속 발생 시 핵 비등 영역에서 순간적으로 막 비등 영역으로 넘어가면서 원전 시스템의 물리적 파괴를 일으킬 수 있게 된다. 따라서 임계 열유속 현상은 시스템 설계 및 안전해석 뿐만 아니라, 열교환 및 냉각 장치 설계에서 중요하게 고려되고 있다. 특히, 비등 열전달 시스템에서 임계 열유속 발생 시 시스템의 물리적 손상을 야기하게 된다. 따라서 원전 시스템을 보호하면서 성능을 극대화시키기 위해서는 임계 열유속 향상이 필수적이며, 임계 열유속 향상을 위한 대안 중 하나로서 열적 특성이 우수한 나노유체를 열전달 시스템에 적용하여 임계 열유속 향상을 위한 연구가 지속되고 있다. 따라서 본 연구에서는 산화 처리된 다중벽 탄소나노튜브 나노유체를 사용하여 각각 0.5 m/s, 1.0 m/s, 1.5 m/s의 유속에서 임계 열유속과 열전달 계수를 측정하였다. 그 결과 산화 처리된 다중벽 탄소나노튜브 나노유체의 유속이 증가 할수록 임계 열유속이 증가하는 것을 확인 하였으며, 순수물과 비교하여 최대 62.64% 증가함을 확인하였다. 그리고 산화 처리된 다중벽 탄소나노튜브 나노유체의 비등 열전달 계수 또한 유속이 증가 할수록 비등 열전달 계수가 증가하는 것을 확인하였며 최대 24.29% 증가함을 확인하였다.

  • PDF

Liquefaction Characteristics of HDPE by Pyrolysis (HDPE의 열분해에 의한 액화 특성)

  • 유홍정;이봉희;김대수
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.84-89
    • /
    • 2003
  • Pyrolysis of high density polyethylene(HDPE) was carried out to find the effects of temperature and time on the pyrolysis. The starting temperature and activation energy of HDPE pyrolysis increased with increasing heating rate. In general, conversion and liquid yield continuously increased with pyrolysis temperature and pyrolysis time. This tendency is very sensitive with pyrolysis time, especially at 45$0^{\circ}C$. Pyrolysis temperature has more influence on the conversion than pyrolysis time. Each liquid product formed during pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. As a result, the amount of liquid products produced during HDPE pyrolysis at 45$0^{\circ}C$ was in the order of light oil > wax > kerosene > gasoline, and at 475$^{\circ}C$ and 50$0^{\circ}C$, it was wax > light > oil > kerosene > gasoline.