본 논문에서는 채널 환경에 강인한 화자 인식 시스템을 위하여 문맥과 화자에 종속적인 켑스트럼 추출 방법과 추출된 켑스트럼에서 화자 정보의 손실을 최소화하는 채널 정규화 방법을 제안하였다. 제안된 추출 방법은 화자의 고유한 피치를 이용한 피치 동기 분석 방법에 기반을 두어 켑스트럼을 추출한다. 따라서 일명 피치 동기 켑스트럼 (PSC)은 유성음 구간에서 성도의 임펄스 응답을 보다 정확하게 표현할 수 있다. 또한 피치는 채널 환경에서 스펙트럼에 비해 강인하므로 피치 동기 켑스트럼은 채널에 의한 스펙트럼의 왜곡을 보상할 수 있다. 제안된 채널 정규화방법인 포먼트 평활화 피치 동기 켑스트랄 평균 차감법 (FBPSCMS)은 포먼트 평활화 켑스트랄 평균 차감법을 PSC에 적용하여 프레임 내 처리의 정확도를 개선시킨다. 제안된 방법들의 화자 인식 성능을 비교하기 위해 남자 112명과 여자 56명에 대해 WMIT과 전화선 환경의 NTIMIT을 이용한 화자 식별을 수행하였다. 실험 결과 피치 동기 LPCC는 기존 단구간 켑스트럼과 비교하여 에러 감소율을 최대 7.7%까지 향상시켰고, FBPSCMS는 극점 필터링 CMS에 비해 보다 안정되고 낮은 에러율을 나타내었다.
본 연구는 중국인 학습자의 한국어 파열음 (/ㄲㄱㅋㄸㄷㅌㅃㅂㅍ/) 발음의 VOT값이 (1) 한국에 거주하며 한국어를 배운 기간에 따라 어떻게 달라지는지 (2) 유의미 단어와 무의미 단어에 따라 달라지는지 (3) 한국인의 이해도와 연관이 있는지를 알아보는 것을 목적으로 한다, 본 연구를 위하여 18명의 중국인 화자들의 한국어 파열음 발음은 음성프로그램으로 분석되었고, 이후 중국인 화자가 발화한 파열음을 한국인 화자가 인지 가능한지 평가하여 이 결과와 VOT값을 비교하여 보았다. 본 실험에 참여한 중국인 화자들의 한국어 VOT값의 평균을 보면, 경음은 한국인 화자들의 VOT값과 큰 차이가 없었으나, 모국어의 영향으로 평음은 한국인 보다 더 짧아, 경음에 가깝게 발음한다는 것을 알 수 있었고, 격음의 VOT도 한국인 보다 더 짧다는 것을 알 수 있었다. 한국에 거주한 시기와 중국어 화자의 한국어 파열음 VOT값의 관계에서는, 중국인 화자의 한국어 발음은 거주 기간이 길어지고 한국어 학습양이 많아져도 쉽게 수정되지 않는 것으로 나타났으며 유의미 단어와 무의미 단어의 차이도 유의미하지 않는 것으로 나타났다.
본 논문에서는 하위단어에 기반한 전화선 채널에서의 어구 종속 화자 확인 시스템을 위한 음성 분할 알고리즘인, 파라미트릭 필터링에 기반한 델타 에너지를 제안한다. 제안한 알고리즘은 특정 밴드의 주파수를 기준으로 대역폭을 변화시키며 필터링한 후 델타 에너지를 이용하는 방법으로 다른 알고리즘에 비해 주변환경에 강인한 것으로 나타났다. 이를 이용해 음성을 하위단어로 분할하고, 각 하위단어를 이용해 화자의 성문을 모델링하였다. 제안한 알고리즘의 성능 평가를 위해 EER(Equal Error Rate)를 사용한다. 그 결과 단일 모델의 EER이 약 6.1%, 하위 단어 모델의 EER이 약 4.0%로 본 논문에서 제안한 알고리즘을 사용했을 때 약 2%의 성능이 향상되었다.
본 논문에서는 화자 확인 시스템의 등록과 확인 과정의 채널 환경 불일치로 성능이 저하되는 문제를 해결하기 위한 새로운 정규화 방법에 대해 설명한다. 제안된 방법은 첫째, 입력 음성으로부터 효과적으로 채널을 추정$\cdot$보상하고 둘째, 스코어 정규화 과정에서 사칭자 모델로서 사용되는 world모델과의 차이를 채널 추정 및 화자 모델 생성에 효과적으로 사용하는 것을 목표로 한다. 이를 위해 입력 음성의 켑스트럼과 HMM world 모델의 파라메터인 평균 켑스트럼과의 차이를 통해 음소열에 종속적인 채널 켑스트럼인 Phone-Dependent Difference Cepstrum을 추정한다. 한편 입력 음성의 음소열은 world모델의 스코어를 얻는 과정에서 함께 얻어질 수 있다. 채널 추정 실험 결과를 통해서 가장 일반적인 채널 정규화방법인 CMS에 의해 추정된 채널에 비해 실제 채널과 유사하며 화자 고유의 특성을 왜곡시키지 않는 채널 추정이 가능함을 확인할 수 있었다.
본 논문은 CDHMM(Continuous Density Hidden Markov Model)의 훈련하는 방법을 동적 다중 그룹 혼합 가중치(Dynamic Mutli-Group mixture weight)을 이용하여 재구성하는 방법을 제안한다. 음성은 Hidden 상태열에 의하여 특성화되고, 각 상태는 가중된 혼합 가우시안 밑도 함수에 의해 표현된다. 음성신호를 더욱더 정확하게 계산하려면 각 상태를 위한 가우시안 함수를 더욱더 많이 사용해야 하며 이것은 많은 계산량이 요구된다. 이러한 문제는 가우시안 분포 확률의 통계적인 평균을 이용하면 계산량을 줄일 수 있다. 그러나 이러한 기존의 방법들은 다양한 화자의 발화속도와 가중치의 적용이 적합하지 못하여 인식률을 저하시키는 단점을 가지고 있다. 이 문제를 다양한 화자의 발화속도에 적합하도록 화자의 화자의 발화속도에 따라 동적으로 5개의 그룹으로 구성하고 동적 다중 그룹 혼합 가중치를 적용하여 CDHMM 파라미터를 재구성함으로써 8.5%의 인식율이 증가되었다.
본 논문은 텔레매틱스 환경에서 문장독립형 화자인증을 이용한 VoIP 음성 보안통신기술을 제안한다. 보안통신을 위해 송신측에서는 화자의 음성정보로부터 생성된 공개키를 통해 음성 패킷을 암호화하여 수신측에 전송함으로써 중간자 공격에 대항한다. 수신측에서는 수신된 암호화된 음성패킷을 복호화한 후에 추출된 음성 특징과 송신측으로부터 수신받은 음성키를 비교하여 화자인증을 수행한다. 제안된 방식에서는 Gaussian Mixture Model(GMM)-supervector를 Bayesian information criterion (BIC) 방식과 Mahalanobis distance (MD) 방식을 이용한 Support Vector Machine (SVM) 커널에 적용하여 문장독립형 화자인증 정확도를 향상시켰다.
본 논문은MLLR (Maximum Likelihood Linear Regression)를 화자 적응시 과적응 방지를 위해 트리 구조에서 HHM 파라메타의 변환을 결정하는 점유 문턱값 (occupation threshold)의 영향을 감소하는 방법에 대해 기술한다. 데이터의 특징을 잘 나타내는 주성분 분석과 독립성분 분석을 통해 모델 혼합성분의 상관관계를 줄이고 상대적으로 데이터의 분포가 적은 축을 삭제함으로써 적은 적응데이터에 의한 과적응의 영향을 감소시켰다. 점유 문턱값을 작게 설정함으로써 변환함수의 수를 증가시켰을 경우, 기존의 MLLR 알고리즘은 과적응에 의해 화자 독립 모델보다 낮은 인식률을 나타내는 반면, 제안한 MLLR알고리즘은 화자 독립 모델의 성능에 비해 평균 2%이상 인식율 향상을 나타내었다.
본 논문에서는 세 가지 문맥독립 화자식별방법을 제안한다. 먼저, 화자 식별시 성도의 특성을 충분히 표현하지 못한 프레임이 포함되지 않도록 하는 프레임선택 (Frame Selection; FS)방법을 제안한다. 이 방법은 각 프레임에서 가장 큰 유사도와 두 번째로 큰 유사도의 차이를 평가하여 중요 프레임을 선택한 후, 선택된 프레임만을 이용하여 유사도를 계산하는 방법이다. 두 번째로 제안하는 복합 (Hyrid)방법은 FS와 가중모델순위 (Weighting Model Rank: WMR)방법을 결합시킨 것으로, FS방법을 이용하여 중요 프레임을 선택한 후, 지수함수 가중치를 이용하여 식별화자를 결정하는 것이다. 마지막으로 제안하는 수정된 가중모델순위 (Modified WMR; MWMR)방법은 식별화자를 결정할 때 유사도의 상대적 위치만을 고려하였던 기존의 U방법과는 달리 유사도와 유사도의 상대적 위치를 함께 고려하는 방법이다. 화자식별 실험결과 제안한 방법들이 기존의 ML 방법보다 향상된 식별률을 보였으며, 복합 방법 및 MWMR방법의 경우에는 WMR방법보다 각각 약 2%와 3%의 향상된 식별률을 나타내어 제안한 방법들의 유효성을 확인할 수 있었다.
본 논문에서는 음성에 의해 구동되는 이동천화를 구현하기 위한 기초 실험으로서, 이동전화상에서 많이 사용되는 단어 데이터를 직접 채록하여 단어 인식 실험을 수행하여 인식기의 성능을 평가하였다. 인식 실험에 사용된 단어 데이터베이스는 서울 화자 360명(남성화자 180명, 여성화자 180명), 41상도 화자 240명(남성화자 120명, 여성화자 120명)으로 구성된 600명의 발성을 이용하여 구성하였다. 발성 단어는 이동전화에 주로 사용되는 중요 기능과 제어 단어, 그리고 숫자음을 포함한 55개 단어로 구성되었으며, 각 화자가 3회씩 발성하였다. 데이터의 채집환경은 잡음이 다소 있는 사무실환경이며, 샘플링율은 8kHz였다. 인식의 기본단위는 48개의 유사음소단위(Phoneme Like Unit : PLU)를 사용하였으며, 정적 특징으로 멜켑스트럼과 동적 특징으로 회귀계수를 특징 파라미터로 사용하였다. 인식실험에서는 OPDP(One Pass Dynamic Programming)알고리즘을 사용하였다. 인식실험을 위한 모델은 각 지역에 따라 학습을 수행한 모델과, 지역에 상관없이 학습한 모델을 만들었으며, 기존의 16Htz의 초기 모델에 8kHz로 채집된 데이터를 적응화시키는 방법을 이용하여 학습을 수행하였다. 인식실험에 있어서는 각 지역별 모델과 지역에 관계없이 학습한 모델에 대하여, 각 지역별로, 그리고 지역에 관계없이 평가용 데이터로 인식실험을 수행하였다 인식실험 결과, $90\%$이상의 비교적 높은 인식률을 얻어 인식시스템 성능의 유효성을 확인할 수 있었다.
본 논문에서는 eigenvoice 방식에 기반하여 다양한 잡음 환경에 강인한 고속 화자 적응 방법을 제안하였다. 제안된 방법은 잡음 제거 기술과 환경 군집화 방법을 기반으로 한다. 그러나, 잡음 제거 기술을 통해 잡음을 제거한 후에도 여전히 잔여 잡음이 존재하므로 비음성 구간의 켑스트럼 평균을 사용하여 잡음 환경별로 화자 적응 데이터를 분류한 후 각각의 환경별로 환경 모델을 구성한다. 이러한 환경 군집화를 적응데이터에 대해 구성한 후 테스트 음성이 입력되면 군집화된 모델 중에서 인식 데이터와 가장 유사한 복수의 환경별 군집화된 화자 적응 모델을 구한 후 이들의 가중함을 통해 화자 적응을 수행하는 방법이다. 제안된 방법은 적응 및 평가를 통해 화자 독립 모델을 사용한 경우에 비해 $40{\sim}59%$ 인식 오류 감소율을 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.